--- license: apache-2.0 language: - en size_categories: - n<1K task_categories: - question-answering - multiple-choice configs: - config_name: benchmark data_files: - split: test path: dataset.json tags: - geospatial annotations_creators: - expert-generated paperswithcode_id: mapeval-textual --- # MapEval-Textual [MapEval](https://arxiv.org/abs/2501.00316)-Textual is created using [MapQaTor](https://arxiv.org/abs/2412.21015). ## Usage ```python from datasets import load_dataset # Load dataset ds = load_dataset("MapEval/MapEval-Textual", name="benchmark") # Generate better prompts for item in ds["test"]: # Start with a clear task description prompt = ( "You are a highly intelligent assistant. " "Based on the given context, answer the multiple-choice question by selecting the correct option.\n\n" "Context:\n" + item["context"] + "\n\n" "Question:\n" + item["question"] + "\n\n" "Options:\n" ) # List the options more clearly for i, option in enumerate(item["options"], start=1): prompt += f"{i}. {option}\n" # Add a concluding sentence to encourage selection of the answer prompt += "\nSelect the best option by choosing its number." # Use the prompt as needed print(prompt) # Replace with your processing logic ``` ## Citation If you use this dataset, please cite the original paper: ``` @article{dihan2024mapeval, title={MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models}, author={Dihan, Mahir Labib and Hassan, Md Tanvir and Parvez, Md Tanvir and Hasan, Md Hasebul and Alam, Md Almash and Cheema, Muhammad Aamir and Ali, Mohammed Eunus and Parvez, Md Rizwan}, journal={arXiv preprint arXiv:2501.00316}, year={2024} } ```