File size: 4,133 Bytes
3d045b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---

language:
- en
tags:
- Manga
- Object Detection
- OCR
- Clustering
- Diarisation
---

<style>
  .title-container {
    display: flex;

    flex-direction: column; /* Stack elements vertically */

    justify-content: center;

    align-items: center;

  }

  

  .title {

    font-size: 2em;

    text-align: center;

    color: #333;

    font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */

    text-transform: uppercase;

    letter-spacing: 0.1em;

    padding: 0.5em 0 0.2em;

    background: transparent;

  }

  

  .title span {

    background: -webkit-linear-gradient(45deg, #6495ED, #4169E1); /* Blue gradient */

    -webkit-background-clip: text;

    -webkit-text-fill-color: transparent;

  }


  .subheading {
    font-size: 1.5em; /* Adjust the size as needed */

    text-align: center;

    color: #555; /* Adjust the color as needed */

    font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */

  }


  .authors {
    font-size: 1em; /* Adjust the size as needed */

    text-align: center;

    color: #777; /* Adjust the color as needed */

    font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */

    padding-top: 1em;

  }


  .affil {
    font-size: 1em; /* Adjust the size as needed */

    text-align: center;

    color: #777; /* Adjust the color as needed */

    font-family: 'Comic Sans MS', cursive; /* Use Comic Sans MS font */

  }


</style>

<div class="title-container">
  <div class="title">
    The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer

  </div>

  <div class="subheading">

    Automatically Generating Transcriptions for Comics

  </div>

  <div class="authors">

    Ragav Sachdeva and Andrew Zisserman

  </div>

  <div class="affil">

    University of Oxford

  </div>

  <div style="display: flex;">

    <a href="https://arxiv.org/abs/2401.10224"><img alt="Static Badge" src="https://img.shields.io/badge/arXiv-2401.10224-blue"></a>

    &emsp;

    <img alt="Dynamic JSON Badge" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fmodels%2Fragavsachdeva%2Fmagi%3Fexpand%255B%255D%3Ddownloads%26expand%255B%255D%3DdownloadsAllTime&query=%24.downloadsAllTime&label=%F0%9F%A4%97%20Downloads">

  </div>

</div>


![image/png](https://cdn-uploads.huggingface.co/production/uploads/630852d2f0dc38fb47c347a4/B3ngZKXGZGBcZgPK6_XF0.png)

# Usage
```python

from transformers import AutoModel

import numpy as np

from PIL import Image

import torch

import os



images = [

        "path_to_image1.jpg",

        "path_to_image2.png",

    ]



def read_image_as_np_array(image_path):

    with open(image_path, "rb") as file:

        image = Image.open(file).convert("L").convert("RGB")

        image = np.array(image)

    return image



images = [read_image_as_np_array(image) for image in images]



model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True).cuda()

with torch.no_grad():

    results = model.predict_detections_and_associations(images)

    text_bboxes_for_all_images = [x["texts"] for x in results]

    ocr_results = model.predict_ocr(images, text_bboxes_for_all_images)



for i in range(len(images)):

    model.visualise_single_image_prediction(images[i], results[i], filename=f"image_{i}.png")

    model.generate_transcript_for_single_image(results[i], ocr_results[i], filename=f"transcript_{i}.txt")

```

# License and Citation
The provided model and datasets are available for unrestricted use in personal, research, non-commercial, and not-for-profit endeavors. For any other usage scenarios, kindly contact me via email, providing a detailed description of your requirements, to establish a tailored licensing arrangement.
My contact information can be found on my website: ragavsachdeva [dot] github [dot] io

```

@misc{sachdeva2024manga,

      title={The Manga Whisperer: Automatically Generating Transcriptions for Comics}, 

      author={Ragav Sachdeva and Andrew Zisserman},

      year={2024},

      eprint={2401.10224},

      archivePrefix={arXiv},

      primaryClass={cs.CV}

}

```