File size: 16,094 Bytes
3d045b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import torch
import numpy as np
import random
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from shapely.geometry import Point, box
import networkx as nx
from copy import deepcopy
from itertools import groupby
def move_to_device(inputs, device):
if hasattr(inputs, "keys"):
return {k: move_to_device(v, device) for k, v in inputs.items()}
elif isinstance(inputs, list):
return [move_to_device(v, device) for v in inputs]
elif isinstance(inputs, tuple):
return tuple([move_to_device(v, device) for v in inputs])
elif isinstance(inputs, np.ndarray):
return torch.from_numpy(inputs).to(device)
else:
return inputs.to(device)
class UnionFind:
def __init__(self, n):
self.parent = list(range(n))
self.size = [1] * n
self.num_components = n
@classmethod
def from_adj_matrix(cls, adj_matrix):
ufds = cls(adj_matrix.shape[0])
for i in range(adj_matrix.shape[0]):
for j in range(adj_matrix.shape[1]):
if adj_matrix[i, j] > 0:
ufds.unite(i, j)
return ufds
@classmethod
def from_adj_list(cls, adj_list):
ufds = cls(len(adj_list))
for i in range(len(adj_list)):
for j in adj_list[i]:
ufds.unite(i, j)
return ufds
@classmethod
def from_edge_list(cls, edge_list, num_nodes):
ufds = cls(num_nodes)
for edge in edge_list:
ufds.unite(edge[0], edge[1])
return ufds
def find(self, x):
if self.parent[x] == x:
return x
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def unite(self, x, y):
x = self.find(x)
y = self.find(y)
if x != y:
if self.size[x] < self.size[y]:
x, y = y, x
self.parent[y] = x
self.size[x] += self.size[y]
self.num_components -= 1
def get_components_of(self, x):
x = self.find(x)
return [i for i in range(len(self.parent)) if self.find(i) == x]
def are_connected(self, x, y):
return self.find(x) == self.find(y)
def get_size(self, x):
return self.size[self.find(x)]
def get_num_components(self):
return self.num_components
def get_labels_for_connected_components(self):
map_parent_to_label = {}
labels = []
for i in range(len(self.parent)):
parent = self.find(i)
if parent not in map_parent_to_label:
map_parent_to_label[parent] = len(map_parent_to_label)
labels.append(map_parent_to_label[parent])
return labels
def visualise_single_image_prediction(image_as_np_array, predictions, filename):
h, w = image_as_np_array.shape[:2]
if h > w:
figure, subplot = plt.subplots(1, 1, figsize=(10, 10 * h / w))
else:
figure, subplot = plt.subplots(1, 1, figsize=(10 * w / h, 10))
subplot.imshow(image_as_np_array)
plot_bboxes(subplot, predictions["panels"], color="green")
plot_bboxes(subplot, predictions["texts"], color="red", add_index=True)
plot_bboxes(subplot, predictions["characters"], color="blue")
COLOURS = [
"#b7ff51", # green
"#f50a8f", # pink
"#4b13b6", # purple
"#ddaa34", # orange
"#bea2a2", # brown
]
colour_index = 0
character_cluster_labels = predictions["character_cluster_labels"]
unique_label_sorted_by_frequency = sorted(list(set(character_cluster_labels)), key=lambda x: character_cluster_labels.count(x), reverse=True)
for label in unique_label_sorted_by_frequency:
root = None
others = []
for i in range(len(predictions["characters"])):
if character_cluster_labels[i] == label:
if root is None:
root = i
else:
others.append(i)
if colour_index >= len(COLOURS):
random_colour = COLOURS[0]
while random_colour in COLOURS:
random_colour = "#" + "".join([random.choice("0123456789ABCDEF") for j in range(6)])
else:
random_colour = COLOURS[colour_index]
colour_index += 1
bbox_i = predictions["characters"][root]
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2
subplot.plot([x1], [y1], color=random_colour, marker="o", markersize=5)
for j in others:
# draw line from centre of bbox i to centre of bbox j
bbox_j = predictions["characters"][j]
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2
x2 = bbox_j[0] + (bbox_j[2] - bbox_j[0]) / 2
y2 = bbox_j[1] + (bbox_j[3] - bbox_j[1]) / 2
subplot.plot([x1, x2], [y1, y2], color=random_colour, linewidth=2)
subplot.plot([x2], [y2], color=random_colour, marker="o", markersize=5)
for (i, j) in predictions["text_character_associations"]:
score = predictions["dialog_confidences"][i]
bbox_i = predictions["texts"][i]
bbox_j = predictions["characters"][j]
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2
x2 = bbox_j[0] + (bbox_j[2] - bbox_j[0]) / 2
y2 = bbox_j[1] + (bbox_j[3] - bbox_j[1]) / 2
subplot.plot([x1, x2], [y1, y2], color="red", linewidth=2, linestyle="dashed", alpha=score)
subplot.axis("off")
if filename is not None:
plt.savefig(filename, bbox_inches="tight", pad_inches=0)
figure.canvas.draw()
image = np.array(figure.canvas.renderer._renderer)
plt.close()
return image
def plot_bboxes(subplot, bboxes, color="red", add_index=False):
for id, bbox in enumerate(bboxes):
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
rect = patches.Rectangle(
bbox[:2], w, h, linewidth=1, edgecolor=color, facecolor="none", linestyle="solid"
)
subplot.add_patch(rect)
if add_index:
cx, cy = bbox[0] + w / 2, bbox[1] + h / 2
subplot.text(cx, cy, str(id), color=color, fontsize=10, ha="center", va="center")
def sort_panels(rects):
before_rects = convert_to_list_of_lists(rects)
# slightly erode all rectangles initially to account for imperfect detections
rects = [erode_rectangle(rect, 0.05) for rect in before_rects]
G = nx.DiGraph()
G.add_nodes_from(range(len(rects)))
for i in range(len(rects)):
for j in range(len(rects)):
if i == j:
continue
if is_there_a_directed_edge(i, j, rects):
G.add_edge(i, j, weight=get_distance(rects[i], rects[j]))
else:
G.add_edge(j, i, weight=get_distance(rects[i], rects[j]))
while True:
cycles = sorted(nx.simple_cycles(G))
cycles = [cycle for cycle in cycles if len(cycle) > 1]
if len(cycles) == 0:
break
cycle = cycles[0]
edges = [e for e in zip(cycle, cycle[1:] + cycle[:1])]
max_cyclic_edge = max(edges, key=lambda x: G.edges[x]["weight"])
G.remove_edge(*max_cyclic_edge)
return list(nx.topological_sort(G))
def is_strictly_above(rectA, rectB):
x1A, y1A, x2A, y2A = rectA
x1B, y1B, x2B, y2B = rectB
return y2A < y1B
def is_strictly_below(rectA, rectB):
x1A, y1A, x2A, y2A = rectA
x1B, y1B, x2B, y2B = rectB
return y2B < y1A
def is_strictly_left_of(rectA, rectB):
x1A, y1A, x2A, y2A = rectA
x1B, y1B, x2B, y2B = rectB
return x2A < x1B
def is_strictly_right_of(rectA, rectB):
x1A, y1A, x2A, y2A = rectA
x1B, y1B, x2B, y2B = rectB
return x2B < x1A
def intersects(rectA, rectB):
return box(*rectA).intersects(box(*rectB))
def is_there_a_directed_edge(a, b, rects):
rectA = rects[a]
rectB = rects[b]
centre_of_A = [rectA[0] + (rectA[2] - rectA[0]) / 2, rectA[1] + (rectA[3] - rectA[1]) / 2]
centre_of_B = [rectB[0] + (rectB[2] - rectB[0]) / 2, rectB[1] + (rectB[3] - rectB[1]) / 2]
if np.allclose(np.array(centre_of_A), np.array(centre_of_B)):
return box(*rectA).area > (box(*rectB)).area
copy_A = [rectA[0], rectA[1], rectA[2], rectA[3]]
copy_B = [rectB[0], rectB[1], rectB[2], rectB[3]]
while True:
if is_strictly_above(copy_A, copy_B) and not is_strictly_left_of(copy_A, copy_B):
return 1
if is_strictly_above(copy_B, copy_A) and not is_strictly_left_of(copy_B, copy_A):
return 0
if is_strictly_right_of(copy_A, copy_B) and not is_strictly_below(copy_A, copy_B):
return 1
if is_strictly_right_of(copy_B, copy_A) and not is_strictly_below(copy_B, copy_A):
return 0
if is_strictly_below(copy_A, copy_B) and is_strictly_right_of(copy_A, copy_B):
return use_cuts_to_determine_edge_from_a_to_b(a, b, rects)
if is_strictly_below(copy_B, copy_A) and is_strictly_right_of(copy_B, copy_A):
return use_cuts_to_determine_edge_from_a_to_b(a, b, rects)
# otherwise they intersect
copy_A = erode_rectangle(copy_A, 0.05)
copy_B = erode_rectangle(copy_B, 0.05)
def get_distance(rectA, rectB):
return box(rectA[0], rectA[1], rectA[2], rectA[3]).distance(box(rectB[0], rectB[1], rectB[2], rectB[3]))
def use_cuts_to_determine_edge_from_a_to_b(a, b, rects):
rects = deepcopy(rects)
while True:
xmin, ymin, xmax, ymax = min(rects[a][0], rects[b][0]), min(rects[a][1], rects[b][1]), max(rects[a][2], rects[b][2]), max(rects[a][3], rects[b][3])
rect_index = [i for i in range(len(rects)) if intersects(rects[i], [xmin, ymin, xmax, ymax])]
rects_copy = [rect for rect in rects if intersects(rect, [xmin, ymin, xmax, ymax])]
# try to split the panels using a "horizontal" lines
overlapping_y_ranges = merge_overlapping_ranges([(y1, y2) for x1, y1, x2, y2 in rects_copy])
panel_index_to_split = {}
for split_index, (y1, y2) in enumerate(overlapping_y_ranges):
for i, index in enumerate(rect_index):
if y1 <= rects_copy[i][1] <= rects_copy[i][3] <= y2:
panel_index_to_split[index] = split_index
if panel_index_to_split[a] != panel_index_to_split[b]:
return panel_index_to_split[a] < panel_index_to_split[b]
# try to split the panels using a "vertical" lines
overlapping_x_ranges = merge_overlapping_ranges([(x1, x2) for x1, y1, x2, y2 in rects_copy])
panel_index_to_split = {}
for split_index, (x1, x2) in enumerate(overlapping_x_ranges[::-1]):
for i, index in enumerate(rect_index):
if x1 <= rects_copy[i][0] <= rects_copy[i][2] <= x2:
panel_index_to_split[index] = split_index
if panel_index_to_split[a] != panel_index_to_split[b]:
return panel_index_to_split[a] < panel_index_to_split[b]
# otherwise, erode the rectangles and try again
rects = [erode_rectangle(rect, 0.05) for rect in rects]
def erode_rectangle(bbox, erosion_factor):
x1, y1, x2, y2 = bbox
w, h = x2 - x1, y2 - y1
cx, cy = x1 + w / 2, y1 + h / 2
if w < h:
aspect_ratio = w / h
erosion_factor_width = erosion_factor * aspect_ratio
erosion_factor_height = erosion_factor
else:
aspect_ratio = h / w
erosion_factor_width = erosion_factor
erosion_factor_height = erosion_factor * aspect_ratio
w = w - w * erosion_factor_width
h = h - h * erosion_factor_height
x1, y1, x2, y2 = cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2
return [x1, y1, x2, y2]
def merge_overlapping_ranges(ranges):
"""
ranges: list of tuples (x1, x2)
"""
if len(ranges) == 0:
return []
ranges = sorted(ranges, key=lambda x: x[0])
merged_ranges = []
for i, r in enumerate(ranges):
if i == 0:
prev_x1, prev_x2 = r
continue
x1, x2 = r
if x1 > prev_x2:
merged_ranges.append((prev_x1, prev_x2))
prev_x1, prev_x2 = x1, x2
else:
prev_x2 = max(prev_x2, x2)
merged_ranges.append((prev_x1, prev_x2))
return merged_ranges
def sort_text_boxes_in_reading_order(text_bboxes, sorted_panel_bboxes):
text_bboxes = convert_to_list_of_lists(text_bboxes)
sorted_panel_bboxes = convert_to_list_of_lists(sorted_panel_bboxes)
if len(text_bboxes) == 0:
return []
def indices_of_same_elements(nums):
groups = groupby(range(len(nums)), key=lambda i: nums[i])
return [list(indices) for _, indices in groups]
panel_id_for_text = get_text_to_panel_mapping(text_bboxes, sorted_panel_bboxes)
indices_of_texts = list(range(len(text_bboxes)))
indices_of_texts, panel_id_for_text = zip(*sorted(zip(indices_of_texts, panel_id_for_text), key=lambda x: x[1]))
indices_of_texts = list(indices_of_texts)
grouped_indices = indices_of_same_elements(panel_id_for_text)
for group in grouped_indices:
subset_of_text_indices = [indices_of_texts[i] for i in group]
text_bboxes_of_subset = [text_bboxes[i] for i in subset_of_text_indices]
sorted_subset_indices = sort_texts_within_panel(text_bboxes_of_subset)
indices_of_texts[group[0] : group[-1] + 1] = [subset_of_text_indices[i] for i in sorted_subset_indices]
return indices_of_texts
def get_text_to_panel_mapping(text_bboxes, sorted_panel_bboxes):
text_to_panel_mapping = []
for text_bbox in text_bboxes:
shapely_text_polygon = box(*text_bbox)
all_intersections = []
all_distances = []
if len(sorted_panel_bboxes) == 0:
text_to_panel_mapping.append(-1)
continue
for j, annotation in enumerate(sorted_panel_bboxes):
shapely_annotation_polygon = box(*annotation)
if shapely_text_polygon.intersects(shapely_annotation_polygon):
all_intersections.append((shapely_text_polygon.intersection(shapely_annotation_polygon).area, j))
all_distances.append((shapely_text_polygon.distance(shapely_annotation_polygon), j))
if len(all_intersections) == 0:
text_to_panel_mapping.append(min(all_distances, key=lambda x: x[0])[1])
else:
text_to_panel_mapping.append(max(all_intersections, key=lambda x: x[0])[1])
return text_to_panel_mapping
def sort_texts_within_panel(rects):
smallest_y = float("inf")
greatest_x = float("-inf")
for i, rect in enumerate(rects):
x1, y1, x2, y2 = rect
smallest_y = min(smallest_y, y1)
greatest_x = max(greatest_x, x2)
reference_point = Point(greatest_x, smallest_y)
polygons_and_index = []
for i, rect in enumerate(rects):
x1, y1, x2, y2 = rect
polygons_and_index.append((box(x1,y1,x2,y2), i))
# sort points by closest to reference point
polygons_and_index = sorted(polygons_and_index, key=lambda x: reference_point.distance(x[0]))
indices = [x[1] for x in polygons_and_index]
return indices
def x1y1wh_to_x1y1x2y2(bbox):
x1, y1, w, h = bbox
return [x1, y1, x1 + w, y1 + h]
def x1y1x2y2_to_xywh(bbox):
x1, y1, x2, y2 = bbox
return [x1, y1, x2 - x1, y2 - y1]
def convert_to_list_of_lists(rects):
if isinstance(rects, torch.Tensor):
return rects.tolist()
if isinstance(rects, np.ndarray):
return rects.tolist()
return [[a, b, c, d] for a, b, c, d in rects] |