Datasets:
Vaibhav Adlakha
commited on
Commit
•
43c785e
1
Parent(s):
8b6e9d4
minor
Browse files- TopiOCQA.py +0 -128
TopiOCQA.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""TopiOCQA: Open-domain Conversational Question Answering with Topic Switching"""
|
18 |
-
|
19 |
-
|
20 |
-
import json
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
# from datasets.tasks import QuestionAnsweringExtractive
|
24 |
-
|
25 |
-
|
26 |
-
logger = datasets.logging.get_logger(__name__)
|
27 |
-
|
28 |
-
|
29 |
-
# _CITATION = """\
|
30 |
-
# @article{2016arXiv160605250R,
|
31 |
-
# author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
|
32 |
-
# Konstantin and {Liang}, Percy},
|
33 |
-
# title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
|
34 |
-
# journal = {arXiv e-prints},
|
35 |
-
# year = 2016,
|
36 |
-
# eid = {arXiv:1606.05250},
|
37 |
-
# pages = {arXiv:1606.05250},
|
38 |
-
# archivePrefix = {arXiv},
|
39 |
-
# eprint = {1606.05250},
|
40 |
-
# }
|
41 |
-
# """
|
42 |
-
|
43 |
-
_DESCRIPTION = """\
|
44 |
-
TopiOCQA is an information-seeking conversational dataset with challenging topic switching phenomena.
|
45 |
-
"""
|
46 |
-
|
47 |
-
# _URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
|
48 |
-
_URLS = {
|
49 |
-
"train": "data/topiocqa_train.jsonl",
|
50 |
-
"valid": "data/topiocqa_valid.jsonl",
|
51 |
-
}
|
52 |
-
|
53 |
-
|
54 |
-
class TopiOCQAConfig(datasets.BuilderConfig):
|
55 |
-
"""BuilderConfig for SQUAD."""
|
56 |
-
|
57 |
-
def __init__(self, **kwargs):
|
58 |
-
"""BuilderConfig for TopiOCQA.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
**kwargs: keyword arguments forwarded to super.
|
62 |
-
"""
|
63 |
-
super(TopiOCQAConfig, self).__init__(**kwargs)
|
64 |
-
|
65 |
-
|
66 |
-
class Squad(datasets.GeneratorBasedBuilder):
|
67 |
-
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
|
68 |
-
|
69 |
-
BUILDER_CONFIGS = [
|
70 |
-
TopiOCQAConfig(
|
71 |
-
name="plain_text",
|
72 |
-
version=datasets.Version("1.0.0", ""),
|
73 |
-
description="Plain text",
|
74 |
-
),
|
75 |
-
]
|
76 |
-
|
77 |
-
def _info(self):
|
78 |
-
return datasets.DatasetInfo(
|
79 |
-
description=_DESCRIPTION,
|
80 |
-
features=datasets.Features(
|
81 |
-
{
|
82 |
-
"Conversation_no": datasets.Value("int32"),
|
83 |
-
"Turn_no": datasets.Value("int32"),
|
84 |
-
"Question": datasets.Value("string"),
|
85 |
-
"Answer": datasets.Value("string"),
|
86 |
-
"Topic": datasets.Value("string"),
|
87 |
-
"Topic_section": datasets.Value("string"),
|
88 |
-
"Rationale": datasets.Value("string"),
|
89 |
-
"is_nq": datasets.Value("bool"),
|
90 |
-
"Context": datasets.features.Sequence(datasets.Value("string")),
|
91 |
-
"Additional_answers": datasets.features.Sequence(
|
92 |
-
{
|
93 |
-
"Answer": datasets.Value("string"),
|
94 |
-
"Topic": datasets.Value("string"),
|
95 |
-
"Topic_section": datasets.Value("string"),
|
96 |
-
"Rationale": datasets.Value("string"),
|
97 |
-
}
|
98 |
-
),
|
99 |
-
}
|
100 |
-
),
|
101 |
-
supervised_keys=None,
|
102 |
-
homepage="https://mcgill-nlp.github.io/topiocqa/",
|
103 |
-
# citation=_CITATION,
|
104 |
-
# task_templates=[
|
105 |
-
# QuestionAnsweringExtractive(
|
106 |
-
# question_column="Question", context_column="context", answers_column="answers"
|
107 |
-
# )
|
108 |
-
# ],
|
109 |
-
)
|
110 |
-
|
111 |
-
def _split_generators(self, dl_manager):
|
112 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
113 |
-
|
114 |
-
return [
|
115 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
116 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
|
117 |
-
]
|
118 |
-
|
119 |
-
def _generate_examples(self, filepath):
|
120 |
-
"""This function returns the examples in the raw (text) form."""
|
121 |
-
logger.info("generating examples from = %s", filepath)
|
122 |
-
key = 0
|
123 |
-
with open(filepath, encoding="utf-8") as f:
|
124 |
-
for line in f:
|
125 |
-
data = json.loads(line)
|
126 |
-
yield key, data
|
127 |
-
key += 1
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|