File size: 20,623 Bytes
ea7ef1c 7862326 0576443 5c4c929 0576443 5c4c929 7862326 0576443 5c4c929 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 f064aae 0576443 5c4c929 7862326 0576443 f064aae 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5db908a 0576443 5c4c929 7862326 0576443 5db908a 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 a106cbd 0576443 5c4c929 7862326 0576443 a106cbd 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 9d01d80 0576443 5c4c929 7862326 0576443 9d01d80 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 ea7ef1c 7862326 0576443 5c4c929 7862326 0576443 7862326 5c4c929 f064aae 5db908a a106cbd 9d01d80 ea7ef1c 0b61f4b ebab8c1 0b61f4b ea7ef1c ebab8c1 0b61f4b ea7ef1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
---
annotations_creators:
- crowdsourced
language_creators:
- other
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<200K
source_datasets:
- extended|other
task_categories:
- text-classification
task_ids:
- natural-language-inference
- sentiment-analysis
- hate-speech-detection
paperswithcode_id: placeholder
pretty_name: TID-8
tags:
- tid8
- annotation disagreement
dataset_info:
- config_name: commitmentbank-ann
features:
- name: HitID
dtype: string
- name: Verb
dtype: string
- name: Context
dtype: string
- name: Prompt
dtype: string
- name: Target
dtype: string
- name: ModalType
dtype: string
- name: Embedding
dtype: string
- name: MatTense
dtype: string
- name: weak_labels
sequence: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: answer_label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '-3'
'5': '-1'
'6': '-2'
splits:
- name: train
num_bytes: 7153364
num_examples: 7816
- name: test
num_bytes: 3353745
num_examples: 3729
download_size: 3278616
dataset_size: 10507109
- config_name: commitmentbank-atr
features:
- name: HitID
dtype: string
- name: Verb
dtype: string
- name: Context
dtype: string
- name: Prompt
dtype: string
- name: Target
dtype: string
- name: ModalType
dtype: string
- name: Embedding
dtype: string
- name: MatTense
dtype: string
- name: weak_labels
sequence: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '-3'
'5': '-1'
'6': '-2'
splits:
- name: train
num_bytes: 6636145
num_examples: 7274
- name: test
num_bytes: 3870964
num_examples: 4271
download_size: 1942215
dataset_size: 10507109
- config_name: friends_qia-ann
features:
- name: Season
dtype: string
- name: Episode
dtype: string
- name: Category
dtype: string
- name: Q_person
dtype: string
- name: A_person
dtype: string
- name: Q_original
dtype: string
- name: Q_modified
dtype: string
- name: A_modified
dtype: string
- name: Annotation_1
dtype: string
- name: Annotation_2
dtype: string
- name: Annotation_3
dtype: string
- name: Goldstandard
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': '1'
'1': '2'
'2': '3'
'3': '4'
'4': '5'
splits:
- name: validation
num_bytes: 687135
num_examples: 1872
- name: train
num_bytes: 4870170
num_examples: 13113
- name: test
num_bytes: 693033
num_examples: 1872
download_size: 818058
dataset_size: 6250338
- config_name: friends_qia-atr
features:
- name: Season
dtype: string
- name: Episode
dtype: string
- name: Category
dtype: string
- name: Q_person
dtype: string
- name: A_person
dtype: string
- name: Q_original
dtype: string
- name: Q_modified
dtype: string
- name: A_modified
dtype: string
- name: Annotation_1
dtype: string
- name: Annotation_2
dtype: string
- name: Annotation_3
dtype: string
- name: Goldstandard
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: answer_label
dtype:
class_label:
names:
'0': '1'
'1': '2'
'2': '3'
'3': '4'
'4': '5'
splits:
- name: train
num_bytes: 4166892
num_examples: 11238
- name: test
num_bytes: 2083446
num_examples: 5619
download_size: 3445839
dataset_size: 6250338
- config_name: goemotions-ann
features:
- name: author
dtype: string
- name: subreddit
dtype: string
- name: link_id
dtype: string
- name: parent_id
dtype: string
- name: created_utc
dtype: string
- name: rater_id
dtype: string
- name: example_very_unclear
dtype: string
- name: admiration
dtype: string
- name: amusement
dtype: string
- name: anger
dtype: string
- name: annoyance
dtype: string
- name: approval
dtype: string
- name: caring
dtype: string
- name: confusion
dtype: string
- name: curiosity
dtype: string
- name: desire
dtype: string
- name: disappointment
dtype: string
- name: disapproval
dtype: string
- name: disgust
dtype: string
- name: embarrassment
dtype: string
- name: excitement
dtype: string
- name: fear
dtype: string
- name: gratitude
dtype: string
- name: grief
dtype: string
- name: joy
dtype: string
- name: love
dtype: string
- name: nervousness
dtype: string
- name: optimism
dtype: string
- name: pride
dtype: string
- name: realization
dtype: string
- name: relief
dtype: string
- name: remorse
dtype: string
- name: sadness
dtype: string
- name: surprise
dtype: string
- name: neutral
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': ambiguous
'2': negative
'3': neutral
splits:
- name: train
num_bytes: 46277072
num_examples: 135504
- name: test
num_bytes: 19831033
num_examples: 58129
download_size: 19388288
dataset_size: 66108105
- config_name: goemotions-atr
features:
- name: author
dtype: string
- name: subreddit
dtype: string
- name: link_id
dtype: string
- name: parent_id
dtype: string
- name: created_utc
dtype: string
- name: rater_id
dtype: string
- name: example_very_unclear
dtype: string
- name: admiration
dtype: string
- name: amusement
dtype: string
- name: anger
dtype: string
- name: annoyance
dtype: string
- name: approval
dtype: string
- name: caring
dtype: string
- name: confusion
dtype: string
- name: curiosity
dtype: string
- name: desire
dtype: string
- name: disappointment
dtype: string
- name: disapproval
dtype: string
- name: disgust
dtype: string
- name: embarrassment
dtype: string
- name: excitement
dtype: string
- name: fear
dtype: string
- name: gratitude
dtype: string
- name: grief
dtype: string
- name: joy
dtype: string
- name: love
dtype: string
- name: nervousness
dtype: string
- name: optimism
dtype: string
- name: pride
dtype: string
- name: realization
dtype: string
- name: relief
dtype: string
- name: remorse
dtype: string
- name: sadness
dtype: string
- name: surprise
dtype: string
- name: neutral
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': ambiguous
'2': negative
'3': neutral
splits:
- name: train
num_bytes: 44856233
num_examples: 131395
- name: test
num_bytes: 21251872
num_examples: 62238
download_size: 19146912
dataset_size: 66108105
- config_name: hs_brexit-ann
features:
- name: other annotations
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: answer_label
dtype:
class_label:
names:
'0': hate_speech
'1': not_hate_speech
splits:
- name: train
num_bytes: 1039008
num_examples: 4704
- name: test
num_bytes: 222026
num_examples: 1008
download_size: 144072
dataset_size: 1261034
- config_name: hs_brexit-atr
features:
- name: other annotations
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': hate_speech
'1': not_hate_speech
splits:
- name: train
num_bytes: 986132
num_examples: 4480
- name: test
num_bytes: 495738
num_examples: 2240
download_size: 408475
dataset_size: 1481870
- config_name: humor-ann
features:
- name: text_a
dtype: string
- name: text_b
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': B
'1': X
'2': A
splits:
- name: train
num_bytes: 28524839
num_examples: 98735
- name: test
num_bytes: 12220621
num_examples: 42315
download_size: 10682583
dataset_size: 40745460
- config_name: humor-atr
features:
- name: text_a
dtype: string
- name: text_b
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: answer_label
dtype:
class_label:
names:
'0': B
'1': X
'2': A
splits:
- name: train
num_bytes: 28161248
num_examples: 97410
- name: test
num_bytes: 12584212
num_examples: 43640
download_size: 24099282
dataset_size: 40745460
- config_name: md-agreement-ann
features:
- name: task
dtype: string
- name: original_id
dtype: string
- name: domain
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': offensive_speech
'1': not_offensive_speech
splits:
- name: train
num_bytes: 7794988
num_examples: 32960
- name: test
num_bytes: 2498445
num_examples: 10553
download_size: 1414114
dataset_size: 10293433
- config_name: md-agreement-atr
features:
- name: task
dtype: string
- name: original_id
dtype: string
- name: domain
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': offensive_speech
'1': not_offensive_speech
splits:
- name: train
num_bytes: 8777085
num_examples: 37077
- name: test
num_bytes: 3957021
num_examples: 16688
download_size: 4121140
dataset_size: 12734106
- config_name: pejorative-ann
features:
- name: pejor_word
dtype: string
- name: word_definition
dtype: string
- name: annotator-1
dtype: string
- name: annotator-2
dtype: string
- name: annotator-3
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: answer_label
dtype:
class_label:
names:
'0': pejorative
'1': non-pejorative
'2': undecided
splits:
- name: train
num_bytes: 350734
num_examples: 1535
- name: test
num_bytes: 150894
num_examples: 659
download_size: 168346
dataset_size: 501628
- config_name: pejorative-atr
features:
- name: pejor_word
dtype: string
- name: word_definition
dtype: string
- name: annotator-1
dtype: string
- name: annotator-2
dtype: string
- name: annotator-3
dtype: string
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': pejorative
'1': non-pejorative
'2': undecided
splits:
- name: train
num_bytes: 254138
num_examples: 1112
- name: test
num_bytes: 247490
num_examples: 1082
download_size: 135023
dataset_size: 501628
- config_name: sentiment-ann
features:
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': Neutral
'1': Somewhat positive
'2': Very negative
'3': Somewhat negative
'4': Very positive
splits:
- name: train
num_bytes: 9350333
num_examples: 59235
- name: test
num_bytes: 235013
num_examples: 1419
download_size: 3371941
dataset_size: 9585346
- config_name: sentiment-atr
features:
- name: question
dtype: string
- name: uid
dtype: string
- name: id
dtype: int32
- name: annotator_id
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': Neutral
'1': Somewhat positive
'2': Very negative
'3': Somewhat negative
'4': Very positive
splits:
- name: train
num_bytes: 6712084
num_examples: 42439
- name: test
num_bytes: 2873262
num_examples: 18215
download_size: 3352022
dataset_size: 9585346
configs:
- config_name: commitmentbank-ann
data_files:
- split: train
path: commitmentbank-ann/train-*
- split: test
path: commitmentbank-ann/test-*
- config_name: friends_qia-atr
data_files:
- split: train
path: friends_qia-atr/train-*
- split: test
path: friends_qia-atr/test-*
- config_name: hs_brexit-ann
data_files:
- split: train
path: hs_brexit-ann/train-*
- split: test
path: hs_brexit-ann/test-*
- config_name: humor-atr
data_files:
- split: train
path: humor-atr/train-*
- split: test
path: humor-atr/test-*
- config_name: pejorative-ann
data_files:
- split: train
path: pejorative-ann/train-*
- split: test
path: pejorative-ann/test-*
---
# Dataset Card for "TID-8"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** placeholder
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Dataset Summary
TID-8 is a new benchmark focused on the task of letting models learn from data that has inherent disagreement.
*Annotation Split*
We split the annotations for each annotator into train and test set.
In other words, the same set of annotators appear in both train, (val),
and test sets.
For datasets that have splits originally, we follow the original split and remove
datapoints in test sets that are annotated by an annotator who is not in
the training set.
For datasets that do not have splits originally, we split the data into
train and test set for convenience, you may further split the train set
into a train and val set.
*Annotator Split*
We split annotators into train and test set.
In other words, a different set of annotators would appear in train and test sets.
We split the data into train and test set for convenience, you may consider
further splitting the train set into a train and val set for performance validation.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
### Data Fields
The data fields are the same among all splits.
See aforementioned information.
### Data Splits
See aforementioned information.
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{deng2023tid8,
title={You Are What You Annotate: Towards Better Models through Annotator Representations},
author={Deng, Naihao and Liu, Siyang and Zhang, Frederick Xinliang and Wu, Winston and Wang, Lu and Mihalcea, Rada},
booktitle={Findings of EMNLP 2023},
year={2023}
}
Note that each TID-8 dataset has its own citation. Please see the source to
get the correct citation for each contained dataset.
```
|