--- dataset_info: - config_name: tqa features: - name: id dtype: string - name: text dtype: string - name: oracle_answer dtype: string - name: oracle_option dtype: string - name: oracle_full_answer dtype: string splits: - name: test num_bytes: 4723238 num_examples: 4635 download_size: 804261 dataset_size: 4723238 - config_name: vqa features: - name: id dtype: string - name: text dtype: string - name: image dtype: image - name: oracle_answer dtype: string - name: oracle_option dtype: string - name: oracle_full_answer dtype: string splits: - name: test num_bytes: 733091578.0 num_examples: 4635 download_size: 712137895 dataset_size: 733091578.0 - config_name: vtqa features: - name: id dtype: string - name: text dtype: string - name: image dtype: image - name: oracle_answer dtype: string - name: oracle_option dtype: string - name: oracle_full_answer dtype: string splits: - name: test num_bytes: 736109315.0 num_examples: 4635 download_size: 712879771 dataset_size: 736109315.0 configs: - config_name: tqa data_files: - split: test path: tqa/test-* - config_name: vqa data_files: - split: test path: vqa/test-* - config_name: vtqa data_files: - split: test path: vtqa/test-* --- ## 🤔 About SpatialEval SpatialEval is a comprehensive benchmark for evaluating spatial intelligence in LLMs and VLMs across four key dimensions: - Spatial relationships - Positional understanding - Object counting - Navigation ### Benchmark Tasks 1. **Spatial-Map**: Understanding spatial relationships between objects in map-based scenarios 2. **Maze-Nav**: Testing navigation through complex environments 3. **Spatial-Grid**: Evaluating spatial reasoning within structured environments 4. **Spatial-Real**: Assessing real-world spatial understanding Each task supports three input modalities: - Text-only (TQA) - Vision-only (VQA) - Vision-Text (VTQA) ![spatialeval_task.png](https://cdn-uploads.huggingface.co/production/uploads/651651f5d93a51ceda3021c3/kpjld6-HCg5LXhO9Ju6-Q.png) ## 📌 Quick Links Project Page: https://spatialeval.github.io/ Paper: https://arxiv.org/pdf/2406.14852 Code: https://github.com/jiayuww/SpatialEval Talk: https://neurips.cc/virtual/2024/poster/94371 ## 🚀 Quick Start ### 📍 Load Dataset SpatialEval provides three input modalities—TQA (Text-only), VQA (Vision-only), and VTQA (Vision-text)—across four tasks: Spatial-Map, Maze-Nav, Spatial-Grid, and Spatial-Real. Each modality and task is easily accessible via Hugging Face. Ensure you have installed the [packages](https://huggingface.co/docs/datasets/en/quickstart): ```python from datasets import load_dataset tqa = load_dataset("MilaWang/SpatialEval", "tqa", split="test") vqa = load_dataset("MilaWang/SpatialEval", "vqa", split="test") vtqa = load_dataset("MilaWang/SpatialEval", "vtqa", split="test") ``` ## ⭐ Citation If you find our work helpful, please consider citing our paper 😊 ``` @inproceedings{wang2024spatial, title={Is A Picture Worth A Thousand Words? Delving Into Spatial Reasoning for Vision Language Models}, author={Wang, Jiayu and Ming, Yifei and Shi, Zhenmei and Vineet, Vibhav and Wang, Xin and Li, Yixuan and Joshi, Neel}, booktitle={The Thirty-Eighth Annual Conference on Neural Information Processing Systems}, year={2024} } ``` ## 💬 Questions Have questions? We're here to help! - Open an issue in the github repository - Contact us through the channels listed on our project page