MinQan commited on
Commit
1fb48ae
1 Parent(s): 692cc8a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +444 -3
README.md CHANGED
@@ -1,3 +1,444 @@
1
- ---
2
- license: unknown
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - found
4
+ language_creators:
5
+ - found
6
+ language:
7
+ - en
8
+ - vi
9
+ multilinguality:
10
+ - monolingual
11
+ - multilingual
12
+ size_categories:
13
+ - 100K<n<1M
14
+ - 1M<n<10M
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - summarization
19
+ - text-generation
20
+ - fill-mask
21
+ - text-classification
22
+ task_ids:
23
+ - text-scoring
24
+ - language-modeling
25
+ - masked-language-modeling
26
+ - sentiment-classification
27
+ - sentiment-scoring
28
+ - topic-classification
29
+ paperswithcode_id: null
30
+ pretty_name: The Multilingual Amazon Reviews Corpus
31
+ dataset_info:
32
+ - config_name: all_languages
33
+ features:
34
+ - name: review_id
35
+ dtype: string
36
+ - name: product_id
37
+ dtype: string
38
+ - name: reviewer_id
39
+ dtype: string
40
+ - name: stars
41
+ dtype: int32
42
+ - name: review_body
43
+ dtype: string
44
+ - name: review_title
45
+ dtype: string
46
+ - name: language
47
+ dtype: string
48
+ - name: product_category
49
+ dtype: string
50
+ splits:
51
+ - name: train
52
+ num_bytes: 364405048
53
+ num_examples: 1200000
54
+ - name: validation
55
+ num_bytes: 9047533
56
+ num_examples: 30000
57
+ - name: test
58
+ num_bytes: 9099141
59
+ num_examples: 30000
60
+ download_size: 640320386
61
+ dataset_size: 382551722
62
+ - config_name: de
63
+ features:
64
+ - name: review_id
65
+ dtype: string
66
+ - name: product_id
67
+ dtype: string
68
+ - name: reviewer_id
69
+ dtype: string
70
+ - name: stars
71
+ dtype: int32
72
+ - name: review_body
73
+ dtype: string
74
+ - name: review_title
75
+ dtype: string
76
+ - name: language
77
+ dtype: string
78
+ - name: product_category
79
+ dtype: string
80
+ splits:
81
+ - name: train
82
+ num_bytes: 64485678
83
+ num_examples: 200000
84
+ - name: validation
85
+ num_bytes: 1605727
86
+ num_examples: 5000
87
+ - name: test
88
+ num_bytes: 1611044
89
+ num_examples: 5000
90
+ download_size: 94802490
91
+ dataset_size: 67702449
92
+ - config_name: en
93
+ features:
94
+ - name: review_id
95
+ dtype: string
96
+ - name: product_id
97
+ dtype: string
98
+ - name: reviewer_id
99
+ dtype: string
100
+ - name: stars
101
+ dtype: int32
102
+ - name: review_body
103
+ dtype: string
104
+ - name: review_title
105
+ dtype: string
106
+ - name: language
107
+ dtype: string
108
+ - name: product_category
109
+ dtype: string
110
+ splits:
111
+ - name: train
112
+ num_bytes: 58601089
113
+ num_examples: 200000
114
+ - name: validation
115
+ num_bytes: 1474672
116
+ num_examples: 5000
117
+ - name: test
118
+ num_bytes: 1460565
119
+ num_examples: 5000
120
+ download_size: 86094112
121
+ dataset_size: 61536326
122
+ - config_name: es
123
+ features:
124
+ - name: review_id
125
+ dtype: string
126
+ - name: product_id
127
+ dtype: string
128
+ - name: reviewer_id
129
+ dtype: string
130
+ - name: stars
131
+ dtype: int32
132
+ - name: review_body
133
+ dtype: string
134
+ - name: review_title
135
+ dtype: string
136
+ - name: language
137
+ dtype: string
138
+ - name: product_category
139
+ dtype: string
140
+ splits:
141
+ - name: train
142
+ num_bytes: 52375658
143
+ num_examples: 200000
144
+ - name: validation
145
+ num_bytes: 1303958
146
+ num_examples: 5000
147
+ - name: test
148
+ num_bytes: 1312347
149
+ num_examples: 5000
150
+ download_size: 81345461
151
+ dataset_size: 54991963
152
+ - config_name: fr
153
+ features:
154
+ - name: review_id
155
+ dtype: string
156
+ - name: product_id
157
+ dtype: string
158
+ - name: reviewer_id
159
+ dtype: string
160
+ - name: stars
161
+ dtype: int32
162
+ - name: review_body
163
+ dtype: string
164
+ - name: review_title
165
+ dtype: string
166
+ - name: language
167
+ dtype: string
168
+ - name: product_category
169
+ dtype: string
170
+ splits:
171
+ - name: train
172
+ num_bytes: 54593565
173
+ num_examples: 200000
174
+ - name: validation
175
+ num_bytes: 1340763
176
+ num_examples: 5000
177
+ - name: test
178
+ num_bytes: 1364510
179
+ num_examples: 5000
180
+ download_size: 85917293
181
+ dataset_size: 57298838
182
+ - config_name: ja
183
+ features:
184
+ - name: review_id
185
+ dtype: string
186
+ - name: product_id
187
+ dtype: string
188
+ - name: reviewer_id
189
+ dtype: string
190
+ - name: stars
191
+ dtype: int32
192
+ - name: review_body
193
+ dtype: string
194
+ - name: review_title
195
+ dtype: string
196
+ - name: language
197
+ dtype: string
198
+ - name: product_category
199
+ dtype: string
200
+ splits:
201
+ - name: train
202
+ num_bytes: 82401390
203
+ num_examples: 200000
204
+ - name: validation
205
+ num_bytes: 2035391
206
+ num_examples: 5000
207
+ - name: test
208
+ num_bytes: 2048048
209
+ num_examples: 5000
210
+ download_size: 177773783
211
+ dataset_size: 86484829
212
+ - config_name: zh
213
+ features:
214
+ - name: review_id
215
+ dtype: string
216
+ - name: product_id
217
+ dtype: string
218
+ - name: reviewer_id
219
+ dtype: string
220
+ - name: stars
221
+ dtype: int32
222
+ - name: review_body
223
+ dtype: string
224
+ - name: review_title
225
+ dtype: string
226
+ - name: language
227
+ dtype: string
228
+ - name: product_category
229
+ dtype: string
230
+ splits:
231
+ - name: train
232
+ num_bytes: 51947668
233
+ num_examples: 200000
234
+ - name: validation
235
+ num_bytes: 1287106
236
+ num_examples: 5000
237
+ - name: test
238
+ num_bytes: 1302711
239
+ num_examples: 5000
240
+ download_size: 114387247
241
+ dataset_size: 54537485
242
+ config_names:
243
+ - all_languages
244
+ - de
245
+ - en
246
+ - es
247
+ - fr
248
+ - ja
249
+ - zh
250
+ viewer: false
251
+ license: other
252
+ ---
253
+
254
+ # Dataset Card for The Multilingual Amazon Reviews Corpus
255
+
256
+ ## Table of Contents
257
+ - [Dataset Card for amazon_reviews_multi](#dataset-card-for-amazon_reviews_multi)
258
+ - [Table of Contents](#table-of-contents)
259
+ - [Dataset Description](#dataset-description)
260
+ - [Dataset Summary](#dataset-summary)
261
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
262
+ - [Languages](#languages)
263
+ - [Dataset Structure](#dataset-structure)
264
+ - [Data Instances](#data-instances)
265
+ - [plain_text](#plain_text)
266
+ - [Data Fields](#data-fields)
267
+ - [plain_text](#plain_text-1)
268
+ - [Data Splits](#data-splits)
269
+ - [Dataset Creation](#dataset-creation)
270
+ - [Curation Rationale](#curation-rationale)
271
+ - [Source Data](#source-data)
272
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
273
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
274
+ - [Annotations](#annotations)
275
+ - [Annotation process](#annotation-process)
276
+ - [Who are the annotators?](#who-are-the-annotators)
277
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
278
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
279
+ - [Social Impact of Dataset](#social-impact-of-dataset)
280
+ - [Discussion of Biases](#discussion-of-biases)
281
+ - [Other Known Limitations](#other-known-limitations)
282
+ - [Additional Information](#additional-information)
283
+ - [Dataset Curators](#dataset-curators)
284
+ - [Licensing Information](#licensing-information)
285
+ - [Citation Information](#citation-information)
286
+ - [Contributions](#contributions)
287
+
288
+ ## Dataset Description
289
+
290
+ - **Webpage:** https://registry.opendata.aws/amazon-reviews-ml/
291
+ - **Paper:** https://arxiv.org/abs/2010.02573
292
+ - **Point of Contact:** [multilingual-reviews-dataset@amazon.com](mailto:multilingual-reviews-dataset@amazon.com)
293
+
294
+ ### Dataset Summary
295
+
296
+ <div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
297
+ <p><b>Defunct:</b> Dataset "amazon_reviews_multi" is defunct and no longer accessible due to the decision of data providers.</p>
298
+ </div>
299
+
300
+ We provide an Amazon product reviews dataset for multilingual text classification. The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish, collected between November 1, 2015 and November 1, 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID and the coarse-grained product category (e.g. ‘books’, ‘appliances’, etc.) The corpus is balanced across stars, so each star rating constitutes 20% of the reviews in each language.
301
+
302
+ For each language, there are 200,000, 5,000 and 5,000 reviews in the training, development and test sets respectively. The maximum number of reviews per reviewer is 20 and the maximum number of reviews per product is 20. All reviews are truncated after 2,000 characters, and all reviews are at least 20 characters long.
303
+
304
+ Note that the language of a review does not necessarily match the language of its marketplace (e.g. reviews from amazon.de are primarily written in German, but could also be written in English, etc.). For this reason, we applied a language detection algorithm based on the work in Bojanowski et al. (2017) to determine the language of the review text and we removed reviews that were not written in the expected language.
305
+
306
+ ### Supported Tasks and Leaderboards
307
+
308
+ [More Information Needed]
309
+
310
+ ### Languages
311
+
312
+ The dataset contains reviews in English, Japanese, German, French, Chinese and Spanish.
313
+
314
+ ## Dataset Structure
315
+
316
+ ### Data Instances
317
+
318
+ Each data instance corresponds to a review. The original JSON for an instance looks like so (German example):
319
+
320
+ ```json
321
+ {
322
+ "review_id": "de_0784695",
323
+ "product_id": "product_de_0572654",
324
+ "reviewer_id": "reviewer_de_0645436",
325
+ "stars": "1",
326
+ "review_body": "Leider, leider nach einmal waschen ausgeblichen . Es sieht super h\u00fcbsch aus , nur leider stinkt es ganz schrecklich und ein Waschgang in der Maschine ist notwendig ! Nach einem mal waschen sah es aus als w\u00e4re es 10 Jahre alt und hatte 1000 e von Waschg\u00e4ngen hinter sich :( echt schade !",
327
+ "review_title": "Leider nicht zu empfehlen",
328
+ "language": "de",
329
+ "product_category": "home"
330
+ }
331
+ ```
332
+
333
+ ### Data Fields
334
+
335
+ - `review_id`: A string identifier of the review.
336
+ - `product_id`: A string identifier of the product being reviewed.
337
+ - `reviewer_id`: A string identifier of the reviewer.
338
+ - `stars`: An int between 1-5 indicating the number of stars.
339
+ - `review_body`: The text body of the review.
340
+ - `review_title`: The text title of the review.
341
+ - `language`: The string identifier of the review language.
342
+ - `product_category`: String representation of the product's category.
343
+
344
+ ### Data Splits
345
+
346
+ Each language configuration comes with its own `train`, `validation`, and `test` splits. The `all_languages` split
347
+ is simply a concatenation of the corresponding split across all languages. That is, the `train` split for
348
+ `all_languages` is a concatenation of the `train` splits for each of the languages and likewise for `validation` and
349
+ `test`.
350
+
351
+ ## Dataset Creation
352
+
353
+ ### Curation Rationale
354
+
355
+ The dataset is motivated by the desire to advance sentiment analysis and text classification in other (non-English)
356
+ languages.
357
+
358
+ ### Source Data
359
+
360
+ #### Initial Data Collection and Normalization
361
+
362
+ The authors gathered the reviews from the marketplaces in the US, Japan, Germany, France, Spain, and China for the
363
+ English, Japanese, German, French, Spanish, and Chinese languages, respectively. They then ensured the correct
364
+ language by applying a language detection algorithm, only retaining those of the target language. In a random sample
365
+ of the resulting reviews, the authors observed a small percentage of target languages that were incorrectly filtered
366
+ out and a very few mismatched languages that were incorrectly retained.
367
+
368
+ #### Who are the source language producers?
369
+
370
+ The original text comes from Amazon customers reviewing products on the marketplace across a variety of product
371
+ categories.
372
+
373
+ ### Annotations
374
+
375
+ #### Annotation process
376
+
377
+ Each of the fields included are submitted by the user with the review or otherwise associated with the review. No
378
+ manual or machine-driven annotation was necessary.
379
+
380
+ #### Who are the annotators?
381
+
382
+ N/A
383
+
384
+ ### Personal and Sensitive Information
385
+
386
+ According to the original dataset [license terms](https://docs.opendata.aws/amazon-reviews-ml/license.txt), you may not:
387
+ - link or associate content in the Reviews Corpus with any personal information (including Amazon customer accounts), or
388
+ - attempt to determine the identity of the author of any content in the Reviews Corpus.
389
+
390
+ If you violate any of the foregoing conditions, your license to access and use the Reviews Corpus will automatically
391
+ terminate without prejudice to any of the other rights or remedies Amazon may have.
392
+
393
+ ## Considerations for Using the Data
394
+
395
+ ### Social Impact of Dataset
396
+
397
+ This dataset is part of an effort to encourage text classification research in languages other than English. Such
398
+ work increases the accessibility of natural language technology to more regions and cultures. Unfortunately, each of
399
+ the languages included here is relatively high resource and well studied.
400
+
401
+ ### Discussion of Biases
402
+
403
+ The dataset contains only reviews from verified purchases (as described in the paper, section 2.1), and the reviews
404
+ should conform the [Amazon Community Guidelines](https://www.amazon.com/gp/help/customer/display.html?nodeId=GLHXEX85MENUE4XF).
405
+
406
+ ### Other Known Limitations
407
+
408
+ The dataset is constructed so that the distribution of star ratings is balanced. This feature has some advantages for
409
+ purposes of classification, but some types of language may be over or underrepresented relative to the original
410
+ distribution of reviews to achieve this balance.
411
+
412
+ ## Additional Information
413
+
414
+ ### Dataset Curators
415
+
416
+ Published by Phillip Keung, Yichao Lu, György Szarvas, and Noah A. Smith. Managed by Amazon.
417
+
418
+ ### Licensing Information
419
+
420
+ Amazon has licensed this dataset under its own agreement for non-commercial research usage only. This licence is quite restrictive preventing use anywhere a fee is received including paid for internships etc. A copy of the agreement can be found at the dataset webpage here:
421
+ https://docs.opendata.aws/amazon-reviews-ml/license.txt
422
+
423
+ By accessing the Multilingual Amazon Reviews Corpus ("Reviews Corpus"), you agree that the Reviews Corpus is an Amazon Service subject to the [Amazon.com Conditions of Use](https://www.amazon.com/gp/help/customer/display.html/ref=footer_cou?ie=UTF8&nodeId=508088) and you agree to be bound by them, with the following additional conditions:
424
+
425
+ In addition to the license rights granted under the Conditions of Use, Amazon or its content providers grant you a limited, non-exclusive, non-transferable, non-sublicensable, revocable license to access and use the Reviews Corpus for purposes of academic research. You may not resell, republish, or make any commercial use of the Reviews Corpus or its contents, including use of the Reviews Corpus for commercial research, such as research related to a funding or consultancy contract, internship, or other relationship in which the results are provided for a fee or delivered to a for-profit organization. You may not (a) link or associate content in the Reviews Corpus with any personal information (including Amazon customer accounts), or (b) attempt to determine the identity of the author of any content in the Reviews Corpus. If you violate any of the foregoing conditions, your license to access and use the Reviews Corpus will automatically terminate without prejudice to any of the other rights or remedies Amazon may have.
426
+
427
+ ### Citation Information
428
+
429
+ Please cite the following paper (arXiv) if you found this dataset useful:
430
+
431
+ Phillip Keung, Yichao Lu, György Szarvas and Noah A. Smith. “The Multilingual Amazon Reviews Corpus.” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020.
432
+
433
+ ```
434
+ @inproceedings{marc_reviews,
435
+ title={The Multilingual Amazon Reviews Corpus},
436
+ author={Keung, Phillip and Lu, Yichao and Szarvas, György and Smith, Noah A.},
437
+ booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing},
438
+ year={2020}
439
+ }
440
+ ```
441
+
442
+ ### Contributions
443
+
444
+ Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset.