|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Monash Time Series Forecasting Repository Dataset.""" |
|
|
|
|
|
from dataclasses import dataclass |
|
from datetime import datetime |
|
from pathlib import Path |
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
from pandas.tseries.frequencies import to_offset |
|
|
|
import datasets |
|
|
|
from .utils import convert_tsf_to_dataframe, frequency_converter |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{godahewa2021monash, |
|
author = "Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo", |
|
title = "Monash Time Series Forecasting Archive", |
|
booktitle = "Neural Information Processing Systems Track on Datasets and Benchmarks", |
|
year = "2021", |
|
note = "forthcoming" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Monash Time Series Forecasting Repository which contains 30+ datasets of related time series for global forecasting research. This repository includes both real-world and competition time series datasets covering varied domains. |
|
""" |
|
|
|
_HOMEPAGE = "https://forecastingdata.org/" |
|
|
|
_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_ROOT_URL = "https://zenodo.org/record" |
|
|
|
|
|
@dataclass |
|
class MonashTSFBuilderConfig(datasets.BuilderConfig): |
|
"""MonashTSF builder config with some added meta data.""" |
|
|
|
file_name: Optional[str] = None |
|
record: Optional[str] = None |
|
prediction_length: Optional[int] = None |
|
item_id_column: Optional[str] = None |
|
data_column: Optional[str] = None |
|
target_fields: Optional[List[str]] = None |
|
feat_dynamic_real_fields: Optional[List[str]] = None |
|
multivariate: bool = False |
|
rolling_evaluations: int = 1 |
|
|
|
|
|
class MonashTSF(datasets.GeneratorBasedBuilder): |
|
"""Builder of Monash Time Series Forecasting repository of datasets.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIG_CLASS = MonashTSFBuilderConfig |
|
|
|
BUILDER_CONFIGS = [ |
|
MonashTSFBuilderConfig( |
|
name="weather", |
|
version=VERSION, |
|
description="3010 daily time series representing the variations of four weather variables: rain, mintemp, maxtemp and solar radiation, measured at the weather stations in Australia.", |
|
record="4654822", |
|
file_name="weather_dataset.zip", |
|
data_column="series_type", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="tourism_yearly", |
|
version=VERSION, |
|
description="This dataset contains 518 yearly time series used in the Kaggle Tourism forecasting competition.", |
|
record="4656103", |
|
file_name="tourism_yearly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="tourism_quarterly", |
|
version=VERSION, |
|
description="This dataset contains 427 quarterly time series used in the Kaggle Tourism forecasting competition.", |
|
record="4656093", |
|
file_name="tourism_quarterly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="tourism_monthly", |
|
version=VERSION, |
|
description="This dataset contains 366 monthly time series used in the Kaggle Tourism forecasting competition.", |
|
record="4656096", |
|
file_name="tourism_monthly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="cif_2016", |
|
version=VERSION, |
|
description="72 monthly time series originated from the banking domain used in the CIF 2016 forecasting competition.", |
|
record="4656042", |
|
file_name="cif_2016_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="london_smart_meters", |
|
version=VERSION, |
|
description="5560 half hourly time series that represent the energy consumption readings of London households in kilowatt hour (kWh) from November 2011 to February 2014.", |
|
record="4656072", |
|
file_name="london_smart_meters_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="australian_electricity_demand", |
|
version=VERSION, |
|
description="5 time series representing the half hourly electricity demand of 5 states in Australia: Victoria, New South Wales, Queensland, Tasmania and South Australia.", |
|
record="4659727", |
|
file_name="australian_electricity_demand_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="wind_farms_minutely", |
|
version=VERSION, |
|
description="Minutely time series representing the wind power production of 339 wind farms in Australia.", |
|
record="4654909", |
|
file_name="wind_farms_minutely_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="bitcoin", |
|
version=VERSION, |
|
description="18 daily time series including hash rate, block size, mining difficulty etc. as well as public opinion in the form of tweets and google searches mentioning the keyword bitcoin as potential influencer of the bitcoin price.", |
|
record="5121965", |
|
file_name="bitcoin_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="pedestrian_counts", |
|
version=VERSION, |
|
description="Hourly pedestrian counts captured from 66 sensors in Melbourne city starting from May 2009.", |
|
record="4656626", |
|
file_name="pedestrian_counts_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="vehicle_trips", |
|
version=VERSION, |
|
description="329 daily time series representing the number of trips and vehicles belonging to a set of for-hire vehicle (FHV) companies.", |
|
record="5122535", |
|
file_name="vehicle_trips_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="kdd_cup_2018", |
|
version=VERSION, |
|
description="Hourly time series representing the air quality levels in 59 stations in 2 cities from 01/01/2017 to 31/03/2018.", |
|
record="4656719", |
|
file_name="kdd_cup_2018_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="nn5_daily", |
|
version=VERSION, |
|
description="111 time series to predicting the daily cash withdrawals from ATMs in UK.", |
|
record="4656110", |
|
file_name="nn5_daily_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="nn5_weekly", |
|
version=VERSION, |
|
description="111 time series to predicting the weekly cash withdrawals from ATMs in UK.", |
|
record="4656125", |
|
file_name="nn5_weekly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="kaggle_web_traffic", |
|
version=VERSION, |
|
description="145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.", |
|
record="4656080", |
|
file_name="kaggle_web_traffic_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="kaggle_web_traffic_weekly", |
|
version=VERSION, |
|
description="145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.", |
|
record="4656664", |
|
file_name="kaggle_web_traffic_weekly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="solar_10_minutes", |
|
version=VERSION, |
|
description="137 time series representing the solar power production recorded per every 10 minutes in Alabama state in 2006.", |
|
record="4656144", |
|
file_name="solar_10_minutes_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="solar_weekly", |
|
version=VERSION, |
|
description="137 time series representing the weekly solar power production in Alabama state in 2006.", |
|
record="4656151", |
|
file_name="solar_weekly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="car_parts", |
|
version=VERSION, |
|
description="2674 intermittent monthly time series that represent car parts sales from January 1998 to March 2002.", |
|
record="4656022", |
|
file_name="car_parts_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="fred_md", |
|
version=VERSION, |
|
description="107 monthly time series showing a set of macro-economic indicators from the Federal Reserve Bank.", |
|
record="4654833", |
|
file_name="fred_md_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="traffic_hourly", |
|
version=VERSION, |
|
description="862 hourly time series showing the road occupancy rates on the San Francisco Bay area freeways from 2015 to 2016.", |
|
record="4656132", |
|
file_name="traffic_hourly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="traffic_weekly", |
|
version=VERSION, |
|
description="862 weekly time series showing the road occupancy rates on the San Francisco Bay area freeways from 2015 to 2016.", |
|
record="4656135", |
|
file_name="traffic_weekly_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="hospital", |
|
version=VERSION, |
|
description="767 monthly time series that represent the patient counts related to medical products from January 2000 to December 2006.", |
|
record="4656014", |
|
file_name="hospital_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="covid_deaths", |
|
version=VERSION, |
|
description="266 daily time series that represent the COVID-19 deaths in a set of countries and states from 22/01/2020 to 20/08/2020.", |
|
record="4656009", |
|
file_name="covid_deaths_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="sunspot", |
|
version=VERSION, |
|
description="A single very long daily time series of sunspot numbers from 1818-01-08 to 2020-05-31.", |
|
record="4654773", |
|
file_name="sunspot_dataset_with_missing_values.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="saugeenday", |
|
version=VERSION, |
|
description="A single very long time series representing the daily mean flow of the Saugeen River at Walkerton in cubic meters per second from 01/01/1915 to 31/12/1979.", |
|
record="4656058", |
|
file_name="saugeenday_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="us_births", |
|
version=VERSION, |
|
description="A single very long daily time series representing the number of births in US from 01/01/1969 to 31/12/1988.", |
|
record="4656049", |
|
file_name="us_births_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="solar_4_seconds", |
|
version=VERSION, |
|
description="A single very long daily time series representing the solar power production in MW recorded per every 4 seconds starting from 01/08/2019.", |
|
record="4656027", |
|
file_name="solar_4_seconds_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="wind_4_seconds", |
|
version=VERSION, |
|
description="A single very long daily time series representing the wind power production in MW recorded per every 4 seconds starting from 01/08/2019.", |
|
record="4656032", |
|
file_name="wind_4_seconds_dataset.zip", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="rideshare", |
|
version=VERSION, |
|
description="156 hourly time series representations of attributes related to Uber and Lyft rideshare services for various locations in New York between 26/11/2018 and 18/12/2018.", |
|
record="5122114", |
|
file_name="rideshare_dataset_with_missing_values.zip", |
|
item_id_column=["source_location", "provider_name", "provider_service"], |
|
data_column="type", |
|
target_fields=[ |
|
"price_min", |
|
"price_mean", |
|
"price_max", |
|
"distance_min", |
|
"distance_mean", |
|
"distance_max", |
|
"surge_min", |
|
"surge_mean", |
|
"surge_max", |
|
"api_calls", |
|
], |
|
feat_dynamic_real_fields=["temp", "rain", "humidity", "clouds", "wind"], |
|
multivariate=True, |
|
), |
|
MonashTSFBuilderConfig( |
|
name="oikolab_weather", |
|
version=VERSION, |
|
description="Eight time series representing the hourly climate data nearby Monash University, Clayton, Victoria, Australia from 2010-01-01 to 2021-05-31", |
|
record="5184708", |
|
file_name="oikolab_weather_dataset.zip", |
|
data_column="type", |
|
), |
|
MonashTSFBuilderConfig( |
|
name="temperature_rain", |
|
version=VERSION, |
|
description="32072 daily time series showing the temperature observations and rain forecasts, gathered by the Australian Bureau of Meteorology for 422 weather stations across Australia, between 02/05/2015 and 26/04/2017", |
|
record="5129073", |
|
file_name="temperature_rain_dataset_with_missing_values.zip", |
|
item_id_column="station_id", |
|
data_column="obs_or_fcst", |
|
target_fields=[ |
|
"fcst_0_DailyPoP", |
|
"fcst_0_DailyPoP1", |
|
"fcst_0_DailyPoP10", |
|
"fcst_0_DailyPoP15", |
|
"fcst_0_DailyPoP25", |
|
"fcst_0_DailyPoP5", |
|
"fcst_0_DailyPoP50", |
|
"fcst_0_DailyPrecip", |
|
"fcst_0_DailyPrecip10Pct", |
|
"fcst_0_DailyPrecip25Pct", |
|
"fcst_0_DailyPrecip50Pct", |
|
"fcst_0_DailyPrecip75Pct", |
|
"fcst_1_DailyPoP", |
|
"fcst_1_DailyPoP1", |
|
"fcst_1_DailyPoP10", |
|
"fcst_1_DailyPoP15", |
|
"fcst_1_DailyPoP25", |
|
"fcst_1_DailyPoP5", |
|
"fcst_1_DailyPoP50", |
|
"fcst_1_DailyPrecip", |
|
"fcst_1_DailyPrecip10Pct", |
|
"fcst_1_DailyPrecip25Pct", |
|
"fcst_1_DailyPrecip50Pct", |
|
"fcst_1_DailyPrecip75Pct", |
|
"fcst_2_DailyPoP", |
|
"fcst_2_DailyPoP1", |
|
"fcst_2_DailyPoP10", |
|
"fcst_2_DailyPoP15", |
|
"fcst_2_DailyPoP25", |
|
"fcst_2_DailyPoP5", |
|
"fcst_2_DailyPoP50", |
|
"fcst_2_DailyPrecip", |
|
"fcst_2_DailyPrecip10Pct", |
|
"fcst_2_DailyPrecip25Pct", |
|
"fcst_2_DailyPrecip50Pct", |
|
"fcst_2_DailyPrecip75Pct", |
|
"fcst_3_DailyPoP", |
|
"fcst_3_DailyPoP1", |
|
"fcst_3_DailyPoP10", |
|
"fcst_3_DailyPoP15", |
|
"fcst_3_DailyPoP25", |
|
"fcst_3_DailyPoP5", |
|
"fcst_3_DailyPoP50", |
|
"fcst_3_DailyPrecip", |
|
"fcst_3_DailyPrecip10Pct", |
|
"fcst_3_DailyPrecip25Pct", |
|
"fcst_3_DailyPrecip50Pct", |
|
"fcst_3_DailyPrecip75Pct", |
|
"fcst_4_DailyPoP", |
|
"fcst_4_DailyPoP1", |
|
"fcst_4_DailyPoP10", |
|
"fcst_4_DailyPoP15", |
|
"fcst_4_DailyPoP25", |
|
"fcst_4_DailyPoP5", |
|
"fcst_4_DailyPoP50", |
|
"fcst_4_DailyPrecip", |
|
"fcst_4_DailyPrecip10Pct", |
|
"fcst_4_DailyPrecip25Pct", |
|
"fcst_4_DailyPrecip50Pct", |
|
"fcst_4_DailyPrecip75Pct", |
|
"fcst_5_DailyPoP", |
|
"fcst_5_DailyPoP1", |
|
"fcst_5_DailyPoP10", |
|
"fcst_5_DailyPoP15", |
|
"fcst_5_DailyPoP25", |
|
"fcst_5_DailyPoP5", |
|
"fcst_5_DailyPoP50", |
|
"fcst_5_DailyPrecip", |
|
"fcst_5_DailyPrecip10Pct", |
|
"fcst_5_DailyPrecip25Pct", |
|
"fcst_5_DailyPrecip50Pct", |
|
"fcst_5_DailyPrecip75Pct", |
|
], |
|
feat_dynamic_real_fields=["T_MEAN", "PRCP_SUM", "T_MAX", "T_MIN"], |
|
multivariate=True, |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.multivariate: |
|
features = datasets.Features( |
|
{ |
|
"start": datasets.Value("timestamp[s]"), |
|
"target": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")), |
|
|
|
"feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
|
|
"item_id": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"start": datasets.Value("timestamp[s]"), |
|
"target": datasets.Sequence(datasets.Value("float32")), |
|
"feat_static_cat": datasets.Sequence(datasets.Value("uint64")), |
|
|
|
"feat_dynamic_real": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
|
|
"item_id": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
urls = f"{_ROOT_URL}/{self.config.record}/files/{self.config.file_name}" |
|
data_dir = dl_manager.download_and_extract(urls) |
|
file_path = Path(data_dir) / (self.config.file_name.split(".")[0] + ".tsf") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": file_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": file_path, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": file_path, |
|
"split": "val", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
( |
|
loaded_data, |
|
frequency, |
|
forecast_horizon, |
|
_, |
|
_, |
|
) = convert_tsf_to_dataframe(filepath, value_column_name="target") |
|
|
|
if forecast_horizon is None: |
|
prediction_length_map = { |
|
"S": 60, |
|
"T": 60, |
|
"H": 48, |
|
"D": 30, |
|
"W": 8, |
|
"M": 12, |
|
"Y": 4, |
|
} |
|
freq = frequency_converter(frequency) |
|
freq = to_offset(freq).name |
|
forecast_horizon = prediction_length_map[freq] |
|
|
|
if self.config.prediction_length is not None: |
|
forecast_horizon = self.config.prediction_length |
|
|
|
if self.config.item_id_column is not None: |
|
loaded_data.set_index(self.config.item_id_column, inplace=True) |
|
loaded_data.sort_index(inplace=True) |
|
|
|
for cat, item_id in enumerate(loaded_data.index.unique()): |
|
ts = loaded_data.loc[item_id] |
|
start = ts.start_timestamp[0] |
|
|
|
if self.config.target_fields is not None: |
|
target_fields = ts[ts[self.config.data_column].isin(self.config.target_fields)] |
|
else: |
|
target_fields = self.config.data_column.unique() |
|
|
|
if self.config.feat_dynamic_real_fields is not None: |
|
feat_dynamic_real_fields = ts[ |
|
ts[self.config.data_column].isin(self.config.feat_dynamic_real_fields) |
|
] |
|
feat_dynamic_real = np.vstack(feat_dynamic_real_fields.target) |
|
else: |
|
feat_dynamic_real = None |
|
|
|
target = np.vstack(target_fields.target) |
|
|
|
feat_static_cat = [cat] |
|
|
|
if split in ["train", "val"]: |
|
offset = forecast_horizon * self.config.rolling_evaluations + forecast_horizon * (split == "train") |
|
target = target[..., :-offset] |
|
if self.config.feat_dynamic_real_fields is not None: |
|
feat_dynamic_real = feat_dynamic_real[..., :-offset] |
|
|
|
yield cat, { |
|
"start": start, |
|
"target": target, |
|
"feat_dynamic_real": feat_dynamic_real, |
|
"feat_static_cat": feat_static_cat, |
|
"item_id": item_id, |
|
} |
|
else: |
|
if self.config.target_fields is not None: |
|
target_fields = loaded_data[loaded_data[self.config.data_column].isin(self.config.target_fields)] |
|
else: |
|
target_fields = loaded_data |
|
if self.config.feat_dynamic_real_fields is not None: |
|
feat_dynamic_real_fields = loaded_data[ |
|
loaded_data[self.config.data_column].isin(self.config.feat_dynamic_real_fields) |
|
] |
|
else: |
|
feat_dynamic_real_fields = None |
|
|
|
for cat, ts in target_fields.iterrows(): |
|
start = ts.get("start_timestamp", datetime.strptime("1900-01-01 00-00-00", "%Y-%m-%d %H-%M-%S")) |
|
target = ts.target |
|
if feat_dynamic_real_fields is not None: |
|
feat_dynamic_real = np.vstack(feat_dynamic_real_fields.target) |
|
else: |
|
feat_dynamic_real = None |
|
|
|
feat_static_cat = [cat] |
|
if self.config.data_column is not None: |
|
item_id = f"{ts.series_name}-{ts[self.config.data_column]}" |
|
else: |
|
item_id = ts.series_name |
|
|
|
if split in ["train", "val"]: |
|
offset = forecast_horizon * self.config.rolling_evaluations + forecast_horizon * (split == "train") |
|
target = target[..., :-offset] |
|
if feat_dynamic_real is not None: |
|
feat_dynamic_real = feat_dynamic_real[..., :-offset] |
|
|
|
yield cat, { |
|
"start": start, |
|
"target": target, |
|
"feat_dynamic_real": feat_dynamic_real, |
|
"feat_static_cat": feat_static_cat, |
|
"item_id": item_id, |
|
} |
|
|