--- dataset_info: - config_name: papyrus-a features: - name: doc_id dtype: int64 - name: title dtype: string - name: input_text dtype: string - name: keyphrases sequence: string - name: lang dtype: string splits: - name: train num_bytes: 48856197 num_examples: 11290 - name: test num_bytes: 14237516 num_examples: 3261 - name: validation num_bytes: 7101302 num_examples: 1638 download_size: 39852407 dataset_size: 70195015 - config_name: papyrus-e features: - name: doc_id dtype: int64 - name: title dtype: string - name: input_text dtype: string - name: keyphrases sequence: string - name: lang dtype: string splits: - name: train num_bytes: 23220234 num_examples: 10508 - name: test num_bytes: 6777041 num_examples: 3046 - name: validation num_bytes: 3394239 num_examples: 1539 download_size: 19090105 dataset_size: 33391514 - config_name: papyrus-f features: - name: doc_id dtype: int64 - name: title dtype: string - name: input_text dtype: string - name: keyphrases sequence: string - name: lang dtype: string splits: - name: train num_bytes: 26332755 num_examples: 10299 - name: test num_bytes: 7691101 num_examples: 2981 - name: validation num_bytes: 3820763 num_examples: 1488 download_size: 20986924 dataset_size: 37844619 - config_name: papyrus-m features: - name: doc_id dtype: int64 - name: title dtype: string - name: input_text dtype: string - name: keyphrases sequence: string - name: lang dtype: string splits: - name: train num_bytes: 49906922 num_examples: 20963 - name: test num_bytes: 14543415 num_examples: 6061 - name: validation num_bytes: 7242231 num_examples: 3040 download_size: 40019743 dataset_size: 71692568 configs: - config_name: papyrus-a data_files: - split: train path: papyrus-a/train-* - split: test path: papyrus-a/test-* - split: validation path: papyrus-a/validation-* - config_name: papyrus-e data_files: - split: train path: papyrus-e/train-* - split: test path: papyrus-e/test-* - split: validation path: papyrus-e/validation-* - config_name: papyrus-f data_files: - split: train path: papyrus-f/train-* - split: test path: papyrus-f/test-* - split: validation path: papyrus-f/validation-* - config_name: papyrus-m data_files: - split: train path: papyrus-m/train-* - split: test path: papyrus-m/test-* - split: validation path: papyrus-m/validation-* license: apache-2.0 language: - en - fr tags: - text-to-text - keyphrase-generation pretty_name: Papyrus size_categories: - 10K ## Dataset Description ### Dataset Summary The datasets are derived from Papyrus, a repository at Université de Montréal containing various types of documents, mainly theses with abstracts in multiple languages, primarily French and English. The entries are provided in four different configurations based on the languages of abstracts, allowing for generating keyphrases in French, English, or multiple languages. - **Papyrus-f:** From the French abstracts, generate French keyphrases. - **Papyrus-e:** From the English abstracts, generate English keyphrases. - **Papyrus-m:** From one abstract in any language, generate keyphrases in that same language (one language to one language). - **Papyrus-a:** From the multiple abstracts of a document, generate keyphrases in the same languages as the abstracts (many to many languages). ### Languages - **Main languages:** English, French - **Others:** Spanish, German, Italian, Portuguese, Arabic, Tagalog, Catalan, Greek, Turkish, Russian, Polish, Farsi, Indonesian, Lingala, Swedish, Finnish, Romanian, Korean ## Dataset Structure ### Dataset content | Config | Train set size | Valid. set size | Test set size | | --------- | -------------- | --------------- | ------------- | | papyrus-m | 20963 | 3040 | 6061 | | papyrus-e | 10508 | 1539 | 3046 | | papyrus-f | 10299 | 1488 | 2981 | | papyrus-a | 11290 | 1638 | 3261 | ### Data fields - **doc_id:** a unique id for the original document. - **title:** title of the thesis or article (the language of the title does not always match the language of the abstract/keyphrases). - **input_text:** abstract of the document. - **keyphrases:** associated keyphrases. - **lang:** language of the abstract/keyphrases. ## Citation @inproceedings{NEURIPS2022_f8870955, author = {Piedboeuf, Fr\'{e}d\'{e}ric and Langlais, Philippe}, booktitle = {Advances in Neural Information Processing Systems}, editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh}, pages = {38046--38059}, publisher = {Curran Associates, Inc.}, title = {A new dataset for multilingual keyphrase generation}, url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/f88709551258331f9ab31b33c71021a4-Paper-Datasets_and_Benchmarks.pdf}, volume = {35}, year = {2022} }