vaishnavi0777 commited on
Commit
2c55938
1 Parent(s): c78bb6c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md CHANGED
@@ -29,3 +29,121 @@ configs:
29
  - split: train
30
  path: data/train-*
31
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  - split: train
30
  path: data/train-*
31
  ---
32
+ ---
33
+ # Dataset Card for Open Source Code and Unit Tests
34
+
35
+ ## Dataset Details
36
+
37
+ ### Dataset Description
38
+
39
+ This dataset contains c++ code snippets and their corresponding ground truth unit tests collected from various open-source GitHub repositories. The primary purpose of this dataset is to aid in the development and evaluation of automated testing tools, code quality analysis, and LLM models for test generation.
40
+
41
+ - **Curated by:** Vaishnavi Bhargava
42
+ - **Language(s):** C++
43
+
44
+
45
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/hyIhFHmrjUzypFgNPU2UX.png" alt="image/png" width="800" height="600"/>
46
+
47
+ ## Dataset Structure
48
+
49
+ ```python
50
+ from datasets import Dataset, load_dataset
51
+
52
+ # Load the dataset
53
+ dataset = load_dataset("Nutanix/cpp_unit_tests_benchmark_dataset")
54
+
55
+ # View dataset structure
56
+
57
+ DatasetDict({
58
+ train: Dataset({
59
+ features: ['ID', 'Language', 'Repository Name', 'File Name', 'File Path in Repository', 'File Path for Unit Test', 'Code', 'Unit Test - (Ground Truth)'],
60
+ num_rows: 2653
61
+ })
62
+ })
63
+ ```
64
+
65
+ The dataset consists of the following columns:
66
+ - `ID`: A unique identifier for each entry in the dataset. [Example: "0"]
67
+ - `Language`: The programming language of the file. [Example: "cpp"]
68
+ - `Repository Name`: The name of the GitHub repository, formatted as organisation/repository. [Example: "google/googletest"]
69
+ - `File Name`: The base name of the file (without extension) where the code or test is located. [Example: "sample1"]
70
+ - `File Path in Repository`: The relative path to the file within the GitHub repository. [Example: "googletest/samples/sample1.cc"]
71
+ - `File Path for Unit Test`: The relative path to the unit test file, if applicable. [Example: "googletest/samples/sample1_unittest.cc"]
72
+ - `Code`: The code content of the file, excluding any documentation or comments.
73
+ - `Unit Test - (Ground Truth)`: The content of the unit test file that tests the code.
74
+
75
+
76
+ ### Dataset Sources
77
+
78
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/jE8b8wf1uV_boMaHxsmnP.png" width="800" height="600" />
79
+
80
+ - **Repository:** The dataset is sourced from the following GitHub repositories: [Latest Commit before 2 July 24]
81
+ - [Pytorch](https://github.com/pytorch/pytorch)
82
+ - [Abseil Absl](https://github.com/abseil/abseil-cpp)
83
+ - [Google Test](https://github.com/google/googletest)
84
+ - [Libphonenumber](https://github.com/google/libphonenumber)
85
+ - [Tensorstore](https://github.com/google/tensorstore)
86
+ - [TensorFlow](https://github.com/tensorflow/tensorflow)
87
+ - [Glog](https://github.com/google/glog/tree/master/src/glog)
88
+ - [Cel-cpp](https://github.com/google/cel-cpp/tree/master)
89
+ - [LevelDB](https://github.com/google/leveldb)
90
+ - [Libaddressinput](https://github.com/google/libaddressinput/tree/master)
91
+ - [Langsvr](https://github.com/google/langsvr/tree/main)
92
+ - [tsl](https://github.com/google/tsl.git)
93
+ - [cel-cpp](https://github.com/google/cel-cpp.git)
94
+ - [quiche](https://github.com/google/quiche.git)
95
+
96
+ ### Some analysis of the dataset:
97
+
98
+
99
+ The box plot representation depicting number of Code and Unit Test lines across different repositories
100
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/E7aoKCvyRBjBR89sbetrR.png" width="800" height="600" />
101
+
102
+ <!-- The histogram visualizes the distribution of the number of lines in the "Code" and "Unit Test-(Ground Truth)" column of the dataset.
103
+
104
+ <div style="display: flex;">
105
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/pm9VHIoIJgSBTWcmfXPOO.png" width="300" height="300" style="margin-right: 10px;" />
106
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/Fo48OZiHeiVLQZ9yA5qch.png" width="300" height="300" />
107
+ </div>
108
+
109
+ The histogram visualizes the distribution of the number of tokens in the "Code" and "Unit Test-(Ground Truth)" column of the dataset.
110
+
111
+ <div style="display: flex;">
112
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/UWb5i1bh5keq8hd7NdT6E.png" width="300" height="300" style="margin-right: 10px;" />
113
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/bAgGzQGmrVrMxm-uHxffv.png" width="300" height="300" />
114
+ </div>
115
+ -->
116
+
117
+ ## Uses
118
+
119
+ ### Direct Use
120
+
121
+ This dataset is suitable for :
122
+ - Developing and evaluating automated testing tools.
123
+ - Analyzing code quality by comparing code with its corresponding unit tests.
124
+ - Training and testing LLM models for automated unit test generation.
125
+
126
+
127
+ ## Dataset Creation
128
+
129
+ ### Curation Rationale
130
+
131
+ The motivation for creating this dataset is to provide a comprehensive collection of code and unit tests from various reputable open-source projects. This can facilitate research and development in the areas of automated testing, code quality analysis, and LLM for software engineering.
132
+
133
+ ### Source Data
134
+
135
+ #### Data Collection and Processing
136
+
137
+ The data was collected from public GitHub repositories. The selection criteria included repositories with well-documented code and corresponding unit tests. The data was filtered and normalized to ensure consistency.
138
+
139
+ #### Who are the source data producers?
140
+
141
+ The source data producers are the contributors to the respective open-source GitHub repositories.
142
+
143
+ ## Bias, Risks, and Limitations
144
+
145
+ The dataset may have biases based on the coding practices and testing methodologies of the included repositories. It may not cover all possible scenarios and edge cases in software testing.
146
+
147
+ ## Citation [optional]
148
+
149
+