OliverUrbann commited on
Commit
bc5a291
1 Parent(s): 2f6a432

doc and eaxmple

Browse files
Files changed (3) hide show
  1. README.md +51 -0
  2. requirements.txt +3 -0
  3. usage_example.py +54 -0
README.md CHANGED
@@ -38,6 +38,57 @@ This dataset is shared under the **apache-2.0** license, allowing use and modifi
38
  ## Citation
39
  If you use this dataset in your research, please cite it as follows:
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  ---
42
  license: apache-2.0
43
  ---
 
38
  ## Citation
39
  If you use this dataset in your research, please cite it as follows:
40
 
41
+
42
+ ## How to Use the Dataset
43
+
44
+ To get started with the **Fall Prediction Dataset for Humanoid Robots**, follow the steps below:
45
+
46
+ ### 1. Set Up a Virtual Environment
47
+
48
+ It's recommended to create a virtual environment to isolate dependencies. You can do this with the following command:
49
+
50
+ ```bash
51
+ python -m venv .venv
52
+ ```
53
+
54
+ After creating the virtual environment, activate it:
55
+
56
+ - On **Windows**:
57
+ ```bash
58
+ .venv\Scripts\activate
59
+ ```
60
+
61
+ - On **macOS/Linux**:
62
+ ```bash
63
+ source .venv/bin/activate
64
+ ```
65
+
66
+ ### 2. Install Dependencies
67
+
68
+ Once the virtual environment is active, install the necessary packages by running:
69
+
70
+ ```bash
71
+ pip install -r requirements.txt
72
+ ```
73
+
74
+ ### 3. Run the Example Script
75
+
76
+ To load and use the dataset for training a simple LSTM model, run the `usage_example.py` script:
77
+
78
+ ```bash
79
+ python usage_example.py
80
+ ```
81
+
82
+ This script demonstrates how to:
83
+ - Load the dataset
84
+ - Select the relevant sensor columns
85
+ - Split the data into training and test sets
86
+ - Train a basic LSTM model to predict falls
87
+ - Evaluate the model on the test set
88
+
89
+ Make sure to check the script and adjust the dataset paths if necessary. For further details, see the comments within the script.
90
+
91
+
92
  ---
93
  license: apache-2.0
94
  ---
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pandas
2
+ tensorflow
3
+ scikit-learn
usage_example.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Usage Example for the Fall Prediction Dataset
2
+ # Please install dependencies before:
3
+ # pip install -r requirements.txt
4
+
5
+ # Import necessary libraries
6
+ import pandas as pd
7
+ import tensorflow as tf
8
+ from tensorflow.keras.models import Sequential
9
+ from tensorflow.keras.layers import Dense, LSTM, Dropout
10
+ from sklearn.model_selection import train_test_split
11
+
12
+ # Load the dataset from Huggingface or a local file path
13
+ # Example for local loading; replace with Huggingface dataset call if applicable
14
+ real_data = pd.read_csv('dataset.csv.bz2', compression='bz2')
15
+
16
+ # Preview the dataset
17
+ print(real_data.head())
18
+
19
+ # Select relevant columns (replace these with actual column names from your dataset)
20
+ # Here we assume that the dataset contains sensor readings like gyroscope and accelerometer data
21
+ relevant_columns = ['gyro_x', 'gyro_y', 'gyro_z', 'acc_x', 'acc_y', 'acc_z', 'upright']
22
+ sensordata = real_data[relevant_columns]
23
+
24
+ # Split the data into features (X) and labels (y)
25
+ # 'fall_label' is assumed to be the column indicating whether a fall occurred
26
+ X = sensordata.drop(columns=['upright']) # Replace 'fall_label' with the actual label column
27
+ y = sensordata['upright']
28
+
29
+ # Split data into training and test sets
30
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
31
+
32
+ # Reshape data for LSTM input (assuming time-series data)
33
+ # Adjust the reshaping based on your dataset structure
34
+ X_train = X_train.values.reshape(X_train.shape[0], X_train.shape[1], 1)
35
+ X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1)
36
+
37
+ # Define a simple LSTM model
38
+ model = Sequential()
39
+ model.add(LSTM(64, input_shape=(X_train.shape[1], 1)))
40
+ model.add(Dropout(0.2))
41
+ model.add(Dense(1, activation='sigmoid'))
42
+
43
+ # Compile the model
44
+ model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
45
+
46
+ # Train the model
47
+ history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, y_test))
48
+
49
+ # Evaluate the model on the test set
50
+ loss, accuracy = model.evaluate(X_test, y_test)
51
+ print(f"Test Accuracy: {accuracy * 100:.2f}%")
52
+
53
+ # You can save the model if needed
54
+ # model.save('fall_prediction_model.h5')