File size: 5,059 Bytes
b260ea5 cc0bc04 b260ea5 cc0bc04 b260ea5 cc0bc04 2080dea cc0bc04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# coding=utf-8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import os
import datasets
from datasets.tasks import QuestionAnsweringExtractive
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Duconv is a chinese conversation \
dataset, designed to evaluate the dialogue models.
"""
_URL = "https://bj.bcebos.com/paddlenlp/datasets/DuConv.zip"
class DuconvConfig(datasets.BuilderConfig):
"""BuilderConfig for Duconv."""
def __init__(self, **kwargs):
"""BuilderConfig for Duconv.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DuconvConfig, self).__init__(**kwargs)
class Duconv(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
DuconvConfig(
name="DuConv",
version=datasets.Version("1.0.0", ""),
description=_DESCRIPTION,
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"id":
datasets.Value("string"),
"goal":
datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"knowledge":
datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
"conversation":
datasets.Sequence(datasets.Value("string")),
"history":
datasets.Sequence(datasets.Value("string")),
"response":
datasets.Value("string"),
}),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://arxiv.org/pdf/1906.05572.pdf",
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(name="train",
gen_kwargs={
"filepath":
os.path.join(dl_dir, 'DuConv',
'train.txt'),
}),
datasets.SplitGenerator(name="dev",
gen_kwargs={
"filepath":
os.path.join(dl_dir, 'DuConv',
'dev.txt'),
}),
datasets.SplitGenerator(name="test_1",
gen_kwargs={
"filepath":
os.path.join(dl_dir, 'DuConv',
'test_1.txt'),
}),
datasets.SplitGenerator(name="test_2",
gen_kwargs={
"filepath":
os.path.join(dl_dir, 'DuConv',
'test_2.txt'),
}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
key = 0
with open(filepath, 'r', encoding="utf-8") as fin:
for line in fin:
duconv = json.loads(line)
goal = duconv["goal"] if "goal" in duconv.keys() else [[]]
knowledge = duconv["knowledge"] if "knowledge" in duconv.keys(
) else [[]]
conversation = duconv[
"conversation"] if "conversation" in duconv.keys() else []
history = duconv["history"] if "history" in duconv.keys(
) else []
response = duconv["response"] if "response" in duconv.keys(
) else ""
yield key, {
"id": str(key),
"goal": goal,
"knowledge": knowledge,
"conversation": conversation,
"history": history,
"response": response,
}
key += 1
|