File size: 4,549 Bytes
9208677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142e3e3
 
 
 
 
 
9208677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# coding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3


import json
import os

import datasets


logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
DureaderRobust is a chinese reading comprehension \
dataset, designed to evaluate the MRC models from \
three aspects: over-sensitivity, over-stability \
and generalization.
"""

_URL = "https://bj.bcebos.com/paddlenlp/datasets/dureader_robust-data.tar.gz"


class DureaderRobustConfig(datasets.BuilderConfig):
    """BuilderConfig for DureaderRobust."""

    def __init__(self, **kwargs):
        """BuilderConfig for DureaderRobust.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(DureaderRobustConfig, self).__init__(**kwargs)


class DureaderRobust(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        DureaderRobustConfig(
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://arxiv.org/abs/2004.11142",
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(_URL)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir,'dureader_robust-data', 'train.json')}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dl_dir,'dureader_robust-data', 'dev.json')}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dl_dir,'dureader_robust-data', 'test.json')}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            durobust = json.load(f)
            for article in durobust["data"]:
                title = article.get("title", "")
                for paragraph in article["paragraphs"]:
                    context = paragraph["context"]  # do not strip leading blank spaces GH-2585
                    for qa in paragraph["qas"]:
                        answer_starts = [answer["answer_start"] for answer in qa.get("answers",'')]
                        answers = [answer["text"] for answer in qa.get("answers",'')]
                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.
                        yield key, {
                            "title": title,
                            "context": context,
                            "question": qa["question"],
                            "id": qa["id"],
                            "answers": {
                                "answer_start": answer_starts,
                                "text": answers,
                            },
                        }
                        key += 1