# coding=utf-8 # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Common Voice Dataset""" import json import os from copy import deepcopy import re import unicodedata from more_itertools import windowed import datasets _CITATION = """\ """ _DESCRIPTION = """\ ami-ihmを音声認識した誤り訂正用データセット """ _HOMEPAGE = "" _LICENSE = "" URLS = { "ctc-large": { "text": "https://huggingface.co/datasets/Padomin/ami-ihm-asr/resolve/main/ami-ihm-ctc-large-normalized.tar.gz", }, } class ami_ihm_asr_config(datasets.BuilderConfig): def __init__(self, n_fronts=0, n_bodies=1, n_rears=0, front_prefix='front:\n', body_prefix='body:\n', rear_prefix='rear:\n', **kwargs): super(ami_ihm_asr_config, self).__init__(**kwargs) self.n_fronts = n_fronts self.n_bodies = n_bodies self.n_rears = n_rears self.front_prefix = front_prefix self.body_prefix = body_prefix self.rear_prefix = rear_prefix class ami_ihm_asr(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.2.0") BUILDER_CONFIGS = [ ami_ihm_asr_config(name="v1", version=VERSION), ami_ihm_asr_config(name="v2", version=VERSION), ami_ihm_asr_config(name="ctc-large", version=VERSION), ami_ihm_asr_config(name="xlsr", version=VERSION), ami_ihm_asr_config(name="ctc-large-oracle", version=VERSION), ] DEFAULT_CONFIG_NAME = "ctc-large" # It's not mandatory to have a default configuration. Just use one if it make sense. BUILDER_CONFIG_CLASS = ami_ihm_asr_config def _info(self): feature_dict = { "text": datasets.Value("string"), "text_asr": datasets.Value("string"), "src": datasets.Value("string"), "tgt": datasets.Value("string"), "id": datasets.Value("string") } features = datasets.Features(feature_dict) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" if "v1" in self.config.name: urls = deepcopy(URLS["v1"]) if "v2" in self.config.name: urls = deepcopy(URLS["v2"]) if "ctc-large" in self.config.name: urls = deepcopy(URLS["ctc-large"]) if "xlsr" in self.config.name: urls = deepcopy(URLS["xlsr"]) if "ctc-large-oracle" in self.config.name: urls = deepcopy(URLS["ctc-large"]) dl_path = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(dl_path["text"], "train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(dl_path["text"], "test.jsonl"), "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": os.path.join(dl_path["text"], "validation.jsonl"), "split": "validation", }, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" id_ = 0 with open(filepath, encoding="utf-8") as f: for line in f: doc = json.loads(line) utterances = doc['utterances'] # divide text and asr texts_asr = [utt['asr'] for utt in utterances] texts = [utt['text'] for utt in utterances] # window considering front and rear contexts if split == "train": windowed_texts_asr = windowed([''] * self.config.n_fronts + texts_asr + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears) windowed_oracles = windowed([''] * self.config.n_fronts + texts + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears) windowed_texts = windowed(texts, self.config.n_bodies) else: windowed_texts_asr = windowed([''] * self.config.n_fronts + texts_asr + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears, fillvalue='', step=self.config.n_bodies) windowed_oracles = windowed([''] * self.config.n_fronts + texts + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears, fillvalue='', step=self.config.n_bodies) windowed_texts = windowed(texts, self.config.n_bodies, fillvalue='', step=self.config.n_bodies) for text_asr, text, oracle, utt in zip(windowed_texts_asr, windowed_texts, windowed_oracles, utterances): src = '' if self.config.n_fronts > 0: src += self.config.front_prefix if "oracle" in self.config.name: src += '\n'.join(oracle[:self.config.n_fronts]) else: src += '\n'.join(text_asr[:self.config.n_fronts]) src += '\n' src += self.config.body_prefix src += '\n'.join(text_asr[self.config.n_fronts:self.config.n_fronts + self.config.n_bodies]) if self.config.n_rears > 0: src += '\n' + self.config.rear_prefix if "oracle" in self.config.name: src += '\n'.join(oracle[self.config.n_fronts + self.config.n_bodies:]) else: src += '\n'.join(text_asr[self.config.n_fronts + self.config.n_bodies:]) tgt = '\n'.join(text) data = { "text": utt["text"], "text_asr": utt["asr"], 'src': src, 'tgt': tgt, 'id': doc["id"], } yield id_, data id_ += 1