File size: 4,702 Bytes
1edb27d 8b72e37 88ae685 5420994 88ae685 6643f26 88ae685 6643f26 88ae685 6643f26 88ae685 6643f26 88ae685 6643f26 ee2f4d9 88ae685 6643f26 88ae685 6643f26 88ae685 6643f26 88ae685 6643f26 bdf910f f4931c5 500173b f4931c5 bdf910f f4931c5 500173b f4931c5 bdf910f d5c84ca bdf910f 5ac945d ee2f4d9 bdf910f 6643f26 bdf910f 9d071d8 1a65f44 bdf910f 1a65f44 9d071d8 1a65f44 bdf910f 1a65f44 bdf910f 1a65f44 bdf910f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: apache-2.0
task_categories:
- question-answering
- text2text-generation
language:
- en
tags:
- chemistry
- biology
- legal
- medical
configs:
- config_name: amazon
data_files:
- split: test
path: "amazon.json"
- config_name: medicine
data_files:
- split: test
path: "medicine.json"
- config_name: physics
data_files:
- split: test
path: "physics.json"
- config_name: biology
data_files:
- split: test
path: "biology.json"
- config_name: chemistry
data_files:
- split: test
path: "chemistry.json"
- config_name: computer_science
data_files:
- split: test
path: "computer_science.json"
- config_name: healthcare
data_files:
- split: test
path: "healthcare.json"
- config_name: legal
data_files:
- split: test
path: "legal.json"
- config_name: literature
data_files:
- split: test
path: "literature.json"
- config_name: material_science
data_files:
- split: test
path: "material_science.json"
---
# GRBench
<!-- Provide a quick summary of the dataset. -->
GRBench is a comprehensive benchmark dataset to support the development of methodology and facilitate the evaluation of the proposed models for Augmenting Large Language Models with External Textual Graphs.
<!--<p align="center">
<img src="https://github.com/PeterGriffinJin/Graph-CoT/blob/main/fig/intro.png" width="400px"/>
</p>-->
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
GRBench includes 10 real-world graphs that can serve as external knowledge sources for LLMs from five domains including academic, e-commerce, literature, healthcare, and legal domains. Each sample in GRBench consists of a manually designed question and an answer, which can be directly answered by referring to the graphs or retrieving the information from the graphs as context. To make the dataset comprehensive, we include samples of different difficulty levels: easy questions (which can be answered with single-hop reasoning on graphs), medium questions (which necessitate multi-hop reasoning on graphs), and hard questions (which call for inductive reasoning with information on graphs as context).
<!--<p align="center">
<img src="https://github.com/PeterGriffinJin/Graph-CoT/blob/main/fig/data.png" width="300px"/>
</p>-->
- **Curated by:** Bowen Jin (https://peterjin.me/), Chulin Xie (https://alphapav.github.io/), Jiawei Zhang (https://javyduck.github.io/) and Kashob Kumar Roy (https://www.linkedin.com/in/forkkr/)
- **Language(s) (NLP):** English
- **License:** apache-2.0
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/PeterGriffinJin/Graph-CoT
- **Paper:** https://arxiv.org/pdf/2404.07103.pdf
- **Graph files:** https://drive.google.com/drive/folders/1DJIgRZ3G-TOf7h0-Xub5_sE4slBUEqy9
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
You can access the graph environment data for each domain here: https://drive.google.com/drive/folders/1DJIgRZ3G-TOf7h0-Xub5_sE4slBUEqy9.
Then download the question answering data for each domain:
```
from datasets import load_dataset
domain = 'amazon' # can be selected from [amazon, medicine, physics, biology, chemistry, computer_science, healthcare, legal, literature, material_science]
dataset = load_dataset("PeterJinGo/GRBench", data_files=f'{domain}.json')
```
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
Information on how the graph file looks can be found here: https://github.com/PeterGriffinJin/Graph-CoT/tree/main/data.
## Dataset Creation
More details of how the dataset is constructed can be found in Section 3 of this paper (https://arxiv.org/pdf/2404.07103.pdf).
The raw graph data sources can be found here: https://github.com/PeterGriffinJin/Graph-CoT/tree/main/data/raw_data.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
@article{jin2024graph,
title={Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs},
author={Jin, Bowen and Xie, Chulin and Zhang, Jiawei and Roy, Kashob Kumar and Zhang, Yu and Wang, Suhang and Meng, Yu and Han, Jiawei},
journal={arXiv preprint arXiv:2404.07103},
year={2024}
}
## Dataset Card Authors
Bowen Jin
## Dataset Card Contact
bowenj4@illinois.edu |