CDR - Extracting Chemical-Disease Relations from Academic Literature # Source: https://github.com/snorkel-team/snorkel-extraction/tree/master/tutorials/cdr # Labels: 0: Negative, the drug does NOT induce the disease 1: Positive, the drug induces the disease 33 Label functions (Use ctrl+F to search for implementation) LFs = [ LF_c_cause_d, LF_c_d, LF_c_induced_d, LF_c_treat_d, LF_c_treat_d_wide, LF_closer_chem, LF_closer_dis, LF_ctd_marker_c_d, LF_ctd_marker_induce, LF_ctd_therapy_treat, LF_ctd_unspecified_treat, LF_ctd_unspecified_induce, LF_d_following_c, LF_d_induced_by_c, LF_d_induced_by_c_tight, LF_d_treat_c, LF_develop_d_following_c, LF_far_c_d, LF_far_d_c, LF_improve_before_disease, LF_in_ctd_therapy, LF_in_ctd_marker, LF_in_patient_with, LF_induce, LF_induce_name, LF_induced_other, LF_level, LF_measure, LF_neg_d, LF_risk_d, LF_treat_d, LF_uncertain, LF_weak_assertions, ] ##### Distant supervision approaches # We'll use the [Comparative Toxicogenomics Database](http://ctdbase.org/) (CTD) for distant supervision. # The CTD lists chemical-condition entity pairs under three categories: therapy, marker, and unspecified. # Therapy means the chemical treats the condition, marker means the chemical is typically present with the condition, # and unspecified is...unspecified. We can write LFs based on these categories. ### LF_in_ctd_unspecified def LF_in_ctd_unspecified(c): return -1 * cand_in_ctd_unspecified(c) ### LF_in_ctd_therapy def LF_in_ctd_therapy(c): return -1 * cand_in_ctd_therapy(c) ### LF_in_ctd_marker def LF_in_ctd_marker(c): return cand_in_ctd_marker(c) ##### Text pattern approaches # Now we'll use some LF helpers to create LFs based on indicative text patterns. # We came up with these rules by using the viewer to examine training candidates and noting frequent patterns. import re from snorkel.lf_helpers import ( get_tagged_text, rule_regex_search_tagged_text, rule_regex_search_btw_AB, rule_regex_search_btw_BA, rule_regex_search_before_A, rule_regex_search_before_B, ) # List to parenthetical def ltp(x): return '(' + '|'.join(x) + ')' ### LF_induce def LF_induce(c): return 1 if re.search(r'{{A}}.{0,20}induc.{0,20}{{B}}', get_tagged_text(c), flags=re.I) else 0 ### LF_d_induced_by_c causal_past = ['induced', 'caused', 'due'] def LF_d_induced_by_c(c): return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + '.{0,9}(by|to).{0,50}', 1) ### LF_d_induced_by_c_tight def LF_d_induced_by_c_tight(c): return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + ' (by|to) ', 1) ### LF_induce_name def LF_induce_name(c): return 1 if 'induc' in c.chemical.get_span().lower() else 0 ### LF_c_cause_d causal = ['cause[sd]?', 'induce[sd]?', 'associated with'] def LF_c_cause_d(c): return 1 if ( re.search(r'{{A}}.{0,50} ' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I) and not re.search('{{A}}.{0,50}(not|no).{0,20}' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I) ) else 0 ### LF_d_treat_c treat = ['treat', 'effective', 'prevent', 'resistant', 'slow', 'promise', 'therap'] def LF_d_treat_c(c): return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1) ### LF_c_treat_d def LF_c_treat_d(c): return rule_regex_search_btw_AB(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1) ### LF_treat_d def LF_treat_d(c): return rule_regex_search_before_B(c, ltp(treat) + '.{0,50}', -1) ### LF_c_treat_d_wide def LF_c_treat_d_wide(c): return rule_regex_search_btw_AB(c, '.{0,200}' + ltp(treat) + '.{0,200}', -1) ### LF_c_d def LF_c_d(c): return 1 if ('{{A}} {{B}}' in get_tagged_text(c)) else 0 ### LF_c_induced_d def LF_c_induced_d(c): return 1 if ( ('{{A}} {{B}}' in get_tagged_text(c)) and (('-induc' in c[0].get_span().lower()) or ('-assoc' in c[0].get_span().lower())) ) else 0 ### LF_improve_before_disease def LF_improve_before_disease(c): return rule_regex_search_before_B(c, 'improv.*', -1) ### LF_in_patient_with pat_terms = ['in a patient with ', 'in patients with'] def LF_in_patient_with(c): return -1 if re.search(ltp(pat_terms) + '{{B}}', get_tagged_text(c), flags=re.I) else 0 ### LF_uncertain uncertain = ['combin', 'possible', 'unlikely'] def LF_uncertain(c): return rule_regex_search_before_A(c, ltp(uncertain) + '.*', -1) ### LF_induced_other def LF_induced_other(c): return rule_regex_search_tagged_text(c, '{{A}}.{20,1000}-induced {{B}}', -1) ### LF_far_c_d def LF_far_c_d(c): return rule_regex_search_btw_AB(c, '.{100,5000}', -1) ### LF_far_d_c def LF_far_d_c(c): return rule_regex_search_btw_BA(c, '.{100,5000}', -1) ### LF_risk_d def LF_risk_d(c): return rule_regex_search_before_B(c, 'risk of ', 1) ### LF_develop_d_following_c def LF_develop_d_following_c(c): return 1 if re.search(r'develop.{0,25}{{B}}.{0,25}following.{0,25}{{A}}', get_tagged_text(c), flags=re.I) else 0 ### LF_d_following_c procedure, following = ['inject', 'administrat'], ['following'] def LF_d_following_c(c): return 1 if re.search('{{B}}.{0,50}' + ltp(following) + '.{0,20}{{A}}.{0,50}' + ltp(procedure), get_tagged_text(c), flags=re.I) else 0 ### LF_measure def LF_measure(c): return -1 if re.search('measur.{0,75}{{A}}', get_tagged_text(c), flags=re.I) else 0 ### LF_level def LF_level(c): return -1 if re.search('{{A}}.{0,25} level', get_tagged_text(c), flags=re.I) else 0 ### LF_neg_d def LF_neg_d(c): return -1 if re.search('(none|not|no) .{0,25}{{B}}', get_tagged_text(c), flags=re.I) else 0 ### LF_weak_assertions WEAK_PHRASES = ['none', 'although', 'was carried out', 'was conducted', 'seems', 'suggests', 'risk', 'implicated', 'the aim', 'to (investigate|assess|study)'] WEAK_RGX = r'|'.join(WEAK_PHRASES) def LF_weak_assertions(c): return -1 if re.search(WEAK_RGX, get_tagged_text(c), flags=re.I) else 0 ##### Composite LFs # The following LFs take some of the strongest distant supervision and text pattern LFs, # and combine them to form more specific LFs. These LFs introduce some obvious # dependencies within the LF set, which we will model later. ### LF_ctd_marker_c_d def LF_ctd_marker_c_d(c): return LF_c_d(c) * cand_in_ctd_marker(c) ### LF_ctd_marker_induce def LF_ctd_marker_induce(c): return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_marker(c) ### LF_ctd_therapy_treat def LF_ctd_therapy_treat(c): return LF_c_treat_d_wide(c) * cand_in_ctd_therapy(c) ### LF_ctd_unspecified_treat def LF_ctd_unspecified_treat(c): return LF_c_treat_d_wide(c) * cand_in_ctd_unspecified(c) ### LF_ctd_unspecified_induce def LF_ctd_unspecified_induce(c): return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_unspecified(c) ##### Rules based on context hierarchy # These last two rules will make use of the context hierarchy. # The first checks if there is a chemical mention much closer to the candidate's disease mention # than the candidate's chemical mention. The second does the analog for diseases. ### LF_closer_chem def LF_closer_chem(c): # Get distance between chemical and disease chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end() dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end() if dis_start < chem_start: dist = chem_start - dis_end else: dist = dis_start - chem_end # Try to find chemical closer than @dist/2 in either direction sent = c.get_parent() closest_other_chem = float('inf') for i in range(dis_end, min(len(sent.words), dis_end + dist // 2)): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Chemical' and cid != sent.entity_cids[chem_start]: return -1 for i in range(max(0, dis_start - dist // 2), dis_start): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Chemical' and cid != sent.entity_cids[chem_start]: return -1 return 0 ### LF_closer_dis def LF_closer_dis(c): # Get distance between chemical and disease chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end() dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end() if dis_start < chem_start: dist = chem_start - dis_end else: dist = dis_start - chem_end # Try to find chemical disease than @dist/8 in either direction sent = c.get_parent() for i in range(chem_end, min(len(sent.words), chem_end + dist // 8)): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Disease' and cid != sent.entity_cids[dis_start]: return -1 for i in range(max(0, chem_start - dist // 8), chem_start): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Disease' and cid != sent.entity_cids[dis_start]: return -1 return 0