image-demo / image_demo.py
Plaban81's picture
Update image_demo.py
15c7da9
raw
history blame
1.88 kB
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {Small image-text set},
author={Plaban Nayak},
year={2023}
}
"""
_DESCRIPTION = """\
Demo dataset for testing or showing image-text capabilities.
"""
_HOMEPAGE = "https://huggingface.co/datasets/Plaban81/image-demo"
_LICENSE = ""
_REPO = "https://huggingface.co/datasets/Plaban81/image-demo"
_URL ="https://huggingface.co/datasets/Plaban81/image-demo/resolve/main/image_dataset.tar.gz"
descriptions = ['kajol', 'kagna', 'nohra', 'aish', 'kareena', 'shakti']
#
class image_demo(datasets.GeneratorBasedBuilder):
"""Small sample of image-text pairs"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'text': datasets.Value("string"),
'image': datasets.Image(),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
images_archive = dl_manager.download((_URL)
print(images_archive)
image_iters = dl_manager.iter_archive(images_archive)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": image_iters
}
),
]
def _generate_examples(self, images):
""" This function returns the examples in the raw (text) form."""
for idx, (filepath, image) in enumerate(images):
#description = filepath.split('/')[-1][:-4]
#description = description.replace('_', ' ')
yield idx, {
"image": {"path": filepath, "image": image.read()},
"text": descriptions[idx],
}