Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
Spanish
Size:
1K - 10K
License:
File size: 3,678 Bytes
d301213 9591fa9 d301213 9591fa9 924ae60 9591fa9 a0f3ea7 9591fa9 d404573 9591fa9 d404573 9591fa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
YAML tags:
annotations_creators:
- automatically-generated
language_creators:
- found
language:
- es
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
pretty_name: wikicat_esv2
size_categories:
- unknown
source_datasets: []
task_categories:
- text-classification
task_ids:
- multi-class-classification
---
# WikiCAT_es: Spanish Text Classification dataset
## Dataset Description
- **Paper:**
- **Point of Contact:** carlos.rodriguez1@bsc.es
**Repository**
### Dataset Summary
WikiCAT_ca is a Spanish corpus for thematic Text Classification tasks. It is created automatically from Wikipedia and Wikidata sources, and contains 8401 articles from the Viquipedia classified under 12 different categories.
This dataset was developed by BSC TeMU as part of the PlanTL project, and intended as an evaluation of LT capabilities to generate useful synthetic corpus.
### Supported Tasks and Leaderboards
Text classification, Language Model
### Languages
ES- Spanish
## Dataset Structure
### Data Instances
Two json files, one for each split.
### Data Fields
We used a simple model with the article text and associated labels, without further metadata.
#### Example:
<pre>
{'sentence': 'La economía de Reunión se ha basado tradicionalmente en la agricultura. La caña de azúcar ha sido el cultivo principal durante más de un siglo, y en algunos años representa el 85% de las exportaciones. El gobierno ha estado impulsando el desarrollo de una industria turística para aliviar el alto desempleo, que representa más del 40% de la fuerza laboral.(...) El PIB total de la isla fue de 18.800 millones de dólares EE.UU. en 2007., 'label': 'Economía'}
</pre>
#### Labels
'Religión', 'Entretenimiento', 'Música', 'Ciencia_y_Tecnología', 'Política', 'Economía', 'Matemáticas', 'Humanidades', 'Deporte', 'Derecho', 'Historia', 'Filosofía'
### Data Splits
* hfeval_esv5.json: 1681 label-document pairs
* hftrain_esv5.json: 6716 label-document pairs
## Dataset Creation
### Methodology
La páginas de "Categoría" representan los temas.
para cada tema, extraemos las páginas asociadas a ese primer nivel de la jerarquía, y utilizamos el resúmen ("summary") como texto representativo.
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
The source data are thematic categories in the different Wikipedias
#### Who are the source language producers?
### Annotations
#### Annotation process
Automatic annotation
#### Who are the annotators?
[N/A]
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
We hope this corpus contributes to the development of language models in Spanish.
### Discussion of Biases
We are aware that this data might contain biases. We have not applied any steps to reduce their impact.
### Other Known Limitations
[N/A]
## Additional Information
### Dataset Curators
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es).
For further information, send an email to (plantl-gob-es@bsc.es).
This work was funded by the [Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA)](https://avancedigital.mineco.gob.es/en-us/Paginas/index.aspx) within the framework of the [Plan-TL](https://plantl.mineco.gob.es/Paginas/index.aspx).
### Licensing Information
This work is licensed under [CC Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/) License.
Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)
### Contributions
[N/A]
|