post-ocr / mattia_stats /collect_stats.py
Pclanglais's picture
Upload folder using huggingface_hub
106d6b9 verified
import os
import pandas as pd
import pyarrow.parquet as pq
import json
import numpy as np
# Configuration
base_dir = "/lustre/fsn1/projects/rech/fmr/uft12cr/statistics_corpus_full"
set_dirs = [f"set_{i}" for i in range(1, 11)] # Sets 1 to 10, excluding filtered sets
test = False # Set to True to process only a single Parquet file
min_tokens_threshold = 100000 # Minimum tokens required to report certain statistics
# Dictionary to accumulate statistics
stats = {
"total_tokens_by_language": {},
"total_words_by_language": {},
"total_tokens_by_collection": {},
"total_words_by_collection": {},
"doc_count_by_language": {},
"doc_count_by_collection": {},
"license_distribution": {},
"compression_rate_by_language": {},
"avg_doc_length_words_by_language": {},
"avg_doc_length_tokens_by_language": {},
"compression_rate_by_collection": {},
"avg_doc_length_words_by_collection": {},
"avg_doc_length_tokens_by_collection": {},
}
processed_files = 0
errors_count = 0
# Helper function to update dictionaries for language and collection statistics
def update_stats(df):
required_columns = {"collection", "language", "token_count", "word_count", "license"}
if not required_columns.issubset(df.columns):
print("DataFrame is missing required columns.")
return
try:
df.loc[df['collection'].notna() & df['collection'].str.contains("Github", case=False), 'language'] = 'code'
for collection_name, col_df in df.groupby("collection"):
stats["total_tokens_by_collection"].setdefault(collection_name, 0)
stats["total_tokens_by_collection"][collection_name] += col_df["token_count"].sum()
stats["total_words_by_collection"].setdefault(collection_name, 0)
stats["total_words_by_collection"][collection_name] += col_df["word_count"].sum()
stats["doc_count_by_collection"].setdefault(collection_name, 0)
stats["doc_count_by_collection"][collection_name] += len(col_df)
license_counts = col_df["license"].value_counts().to_dict()
for license_type, count in license_counts.items():
stats["license_distribution"].setdefault(collection_name, {}).setdefault(license_type, 0)
stats["license_distribution"][collection_name][license_type] += count
for language, lang_df in df.groupby("language"):
stats["total_tokens_by_language"].setdefault(language, 0)
stats["total_tokens_by_language"][language] += lang_df["token_count"].sum()
stats["total_words_by_language"].setdefault(language, 0)
stats["total_words_by_language"][language] += lang_df["word_count"].sum()
stats["doc_count_by_language"].setdefault(language, 0)
stats["doc_count_by_language"][language] += len(lang_df)
except Exception as e:
print(f"Error updating statistics: {e}")
# Gather all parquet files, with only one if in test mode
all_parquet_files = []
for set_dir in set_dirs:
set_path = os.path.join(base_dir, set_dir)
if not os.path.isdir(set_path):
print(f"Directory {set_path} not found, skipping...")
continue
try:
parquet_files = [os.path.join(set_path, f) for f in os.listdir(set_path) if f.endswith(".parquet")]
all_parquet_files.extend(parquet_files)
except Exception as e:
print(f"Error reading directory {set_path}: {e}")
if test:
all_parquet_files = all_parquet_files[:1]
# Process all selected parquet files
total_files = len(all_parquet_files)
for file_path in all_parquet_files:
try:
df = pq.read_table(file_path).to_pandas()
update_stats(df)
processed_files += 1
except Exception as e:
print(f"Error processing file {file_path}: {e}")
errors_count += 1
if processed_files % 10 == 0 or processed_files == total_files:
print(f"Processed {processed_files}/{total_files} files with {errors_count} errors.")
# Compute compression rates and average document lengths by language with threshold checks
for language in stats["total_tokens_by_language"]:
try:
total_tokens = stats["total_tokens_by_language"][language]
total_words = stats["total_words_by_language"][language]
doc_count = stats["doc_count_by_language"][language]
if total_tokens >= min_tokens_threshold:
stats["compression_rate_by_language"][language] = total_tokens / total_words if total_words > 0 else None
stats["avg_doc_length_words_by_language"][language] = total_words / doc_count if doc_count > 0 else None
stats["avg_doc_length_tokens_by_language"][language] = total_tokens / doc_count if doc_count > 0 else None
else:
stats["compression_rate_by_language"][language] = "N/A"
stats["avg_doc_length_words_by_language"][language] = "N/A"
stats["avg_doc_length_tokens_by_language"][language] = "N/A"
except Exception as e:
print(f"Error calculating stats for language {language}: {e}")
# Compute compression rates and average document lengths by collection with threshold checks
for collection in stats["total_tokens_by_collection"]:
try:
total_tokens = stats["total_tokens_by_collection"][collection]
total_words = stats["total_words_by_collection"][collection]
doc_count = stats["doc_count_by_collection"][collection]
if total_tokens >= min_tokens_threshold:
stats["compression_rate_by_collection"][collection] = total_tokens / total_words if total_words > 0 else None
stats["avg_doc_length_words_by_collection"][collection] = total_words / doc_count if doc_count > 0 else None
stats["avg_doc_length_tokens_by_collection"][collection] = total_tokens / doc_count if doc_count > 0 else None
else:
stats["compression_rate_by_collection"][collection] = "N/A"
stats["avg_doc_length_words_by_collection"][collection] = "N/A"
stats["avg_doc_length_tokens_by_collection"][collection] = "N/A"
except Exception as e:
print(f"Error calculating stats for collection {collection}: {e}")
# Convert to native types function
def convert_to_native_types(stats):
def convert(value):
if isinstance(value, (np.integer, np.floating)):
return value.item()
elif isinstance(value, dict):
return {k: convert(v) for k, v in value.items()}
return value
return {k: convert(v) for k, v in stats.items()}
# Print and save statistics in human-readable format
def print_stats(stats):
output = []
output.append("============ Corpus Statistics Overview ============")
total_tokens = sum(stats["total_tokens_by_collection"].values())
total_words = sum(stats["total_words_by_collection"].values())
total_docs = sum(stats["doc_count_by_collection"].values())
output.append(f"\nTotal Tokens in Corpus: {total_tokens:,}")
output.append(f"Total Words in Corpus: {total_words:,}")
output.append(f"Total Documents in Corpus: {total_docs:,}")
# Display top 10 collections by total tokens
output.append("\nTop 10 Collections by Total Tokens:")
for collection, count in sorted(stats["total_tokens_by_collection"].items(), key=lambda x: x[1], reverse=True)[:10]:
output.append(f" - {collection}: {count:,}")
# Display top 10 languages by total tokens
output.append("\nTop 10 Languages by Total Tokens:")
for language, count in sorted(stats["total_tokens_by_language"].items(), key=lambda x: x[1], reverse=True)[:10]:
output.append(f" - {language}: {count:,}")
# Display compression rate by language (top 10)
output.append("\nCompression Rate by Language (Top 10):")
for language, rate in sorted(stats["compression_rate_by_language"].items(), key=lambda x: x[1] if isinstance(x[1], (int, float)) else 0, reverse=True)[:10]:
output.append(f" - {language}: {rate:.2f}" if isinstance(rate, (int, float)) else f" - {language}: N/A")
# Display average document length by language (top 10)
output.append("\nAverage Document Length (Words) by Language (Top 10):")
for language, avg_len in sorted(stats["avg_doc_length_words_by_language"].items(), key=lambda x: x[1] if isinstance(x[1], (int, float)) else 0, reverse=True)[:10]:
output.append(f" - {language}: {avg_len:.2f}" if isinstance(avg_len, (int, float)) else f" - {language}: N/A")
# License distribution by collection (top 5 collections)
output.append("\nLicense Distribution by Collection (Top 5):")
for collection, licenses in list(sorted(stats["license_distribution"].items(), key=lambda x: sum(x[1].values()), reverse=True))[:5]:
output.append(f" - {collection}:")
for license_type, count in sorted(licenses.items(), key=lambda x: x[1], reverse=True):
output.append(f" * {license_type}: {count:,}")
output.append("====================================================")
print("\n".join(output))
# Save to text file
with open('stats_readable_output.txt', 'w') as f:
f.write("\n".join(output))
# Print and save the human-readable stats
print_stats(stats)
# Convert to native types and save as JSON
stats_native = convert_to_native_types(stats)
with open('stats_by_language.json', 'w') as f:
json.dump({
'total_tokens_by_language': stats_native['total_tokens_by_language'],
'total_words_by_language': stats_native['total_words_by_language'],
'doc_count_by_language': stats_native['doc_count_by_language'],
'compression_rate_by_language': stats_native['compression_rate_by_language'],
'avg_doc_length_words_by_language': stats_native['avg_doc_length_words_by_language'],
'avg_doc_length_tokens_by_language': stats_native['avg_doc_length_tokens_by_language'],
}, f, indent=4)
with open('stats_by_collection.json', 'w') as f:
json.dump({
'total_tokens_by_collection': stats_native['total_tokens_by_collection'],
'total_words_by_collection': stats_native['total_words_by_collection'],
'doc_count_by_collection': stats_native['doc_count_by_collection'],
'compression_rate_by_collection': stats_native['compression_rate_by_collection'],
'avg_doc_length_words_by_collection': stats_native['avg_doc_length_words_by_collection'],
'avg_doc_length_tokens_by_collection': stats_native['avg_doc_length_tokens_by_collection'],
'license_distribution': stats_native['license_distribution'],
}, f, indent=4)