import os import pandas as pd import pyarrow.parquet as pq import json import numpy as np # Configuration base_dir = "/lustre/fsn1/projects/rech/fmr/uft12cr/statistics_corpus_full" set_dirs = [f"set_{i}" for i in range(1, 11)] # Sets 1 to 10, excluding filtered sets test = False # Set to True to process only a single Parquet file min_tokens_threshold = 100000 # Minimum tokens required to report certain statistics # Dictionary to accumulate statistics stats = { "total_tokens_by_language": {}, "total_words_by_language": {}, "total_tokens_by_collection": {}, "total_words_by_collection": {}, "doc_count_by_language": {}, "doc_count_by_collection": {}, "license_distribution": {}, "compression_rate_by_language": {}, "avg_doc_length_words_by_language": {}, "avg_doc_length_tokens_by_language": {}, "compression_rate_by_collection": {}, "avg_doc_length_words_by_collection": {}, "avg_doc_length_tokens_by_collection": {}, } processed_files = 0 errors_count = 0 # Helper function to update dictionaries for language and collection statistics def update_stats(df): required_columns = {"collection", "language", "token_count", "word_count", "license"} if not required_columns.issubset(df.columns): print("DataFrame is missing required columns.") return try: df.loc[df['collection'].notna() & df['collection'].str.contains("Github", case=False), 'language'] = 'code' for collection_name, col_df in df.groupby("collection"): stats["total_tokens_by_collection"].setdefault(collection_name, 0) stats["total_tokens_by_collection"][collection_name] += col_df["token_count"].sum() stats["total_words_by_collection"].setdefault(collection_name, 0) stats["total_words_by_collection"][collection_name] += col_df["word_count"].sum() stats["doc_count_by_collection"].setdefault(collection_name, 0) stats["doc_count_by_collection"][collection_name] += len(col_df) license_counts = col_df["license"].value_counts().to_dict() for license_type, count in license_counts.items(): stats["license_distribution"].setdefault(collection_name, {}).setdefault(license_type, 0) stats["license_distribution"][collection_name][license_type] += count for language, lang_df in df.groupby("language"): stats["total_tokens_by_language"].setdefault(language, 0) stats["total_tokens_by_language"][language] += lang_df["token_count"].sum() stats["total_words_by_language"].setdefault(language, 0) stats["total_words_by_language"][language] += lang_df["word_count"].sum() stats["doc_count_by_language"].setdefault(language, 0) stats["doc_count_by_language"][language] += len(lang_df) except Exception as e: print(f"Error updating statistics: {e}") # Gather all parquet files, with only one if in test mode all_parquet_files = [] for set_dir in set_dirs: set_path = os.path.join(base_dir, set_dir) if not os.path.isdir(set_path): print(f"Directory {set_path} not found, skipping...") continue try: parquet_files = [os.path.join(set_path, f) for f in os.listdir(set_path) if f.endswith(".parquet")] all_parquet_files.extend(parquet_files) except Exception as e: print(f"Error reading directory {set_path}: {e}") if test: all_parquet_files = all_parquet_files[:1] # Process all selected parquet files total_files = len(all_parquet_files) for file_path in all_parquet_files: try: df = pq.read_table(file_path).to_pandas() update_stats(df) processed_files += 1 except Exception as e: print(f"Error processing file {file_path}: {e}") errors_count += 1 if processed_files % 10 == 0 or processed_files == total_files: print(f"Processed {processed_files}/{total_files} files with {errors_count} errors.") # Compute compression rates and average document lengths by language with threshold checks for language in stats["total_tokens_by_language"]: try: total_tokens = stats["total_tokens_by_language"][language] total_words = stats["total_words_by_language"][language] doc_count = stats["doc_count_by_language"][language] if total_tokens >= min_tokens_threshold: stats["compression_rate_by_language"][language] = total_tokens / total_words if total_words > 0 else None stats["avg_doc_length_words_by_language"][language] = total_words / doc_count if doc_count > 0 else None stats["avg_doc_length_tokens_by_language"][language] = total_tokens / doc_count if doc_count > 0 else None else: stats["compression_rate_by_language"][language] = "N/A" stats["avg_doc_length_words_by_language"][language] = "N/A" stats["avg_doc_length_tokens_by_language"][language] = "N/A" except Exception as e: print(f"Error calculating stats for language {language}: {e}") # Compute compression rates and average document lengths by collection with threshold checks for collection in stats["total_tokens_by_collection"]: try: total_tokens = stats["total_tokens_by_collection"][collection] total_words = stats["total_words_by_collection"][collection] doc_count = stats["doc_count_by_collection"][collection] if total_tokens >= min_tokens_threshold: stats["compression_rate_by_collection"][collection] = total_tokens / total_words if total_words > 0 else None stats["avg_doc_length_words_by_collection"][collection] = total_words / doc_count if doc_count > 0 else None stats["avg_doc_length_tokens_by_collection"][collection] = total_tokens / doc_count if doc_count > 0 else None else: stats["compression_rate_by_collection"][collection] = "N/A" stats["avg_doc_length_words_by_collection"][collection] = "N/A" stats["avg_doc_length_tokens_by_collection"][collection] = "N/A" except Exception as e: print(f"Error calculating stats for collection {collection}: {e}") # Convert to native types function def convert_to_native_types(stats): def convert(value): if isinstance(value, (np.integer, np.floating)): return value.item() elif isinstance(value, dict): return {k: convert(v) for k, v in value.items()} return value return {k: convert(v) for k, v in stats.items()} # Print and save statistics in human-readable format def print_stats(stats): output = [] output.append("============ Corpus Statistics Overview ============") total_tokens = sum(stats["total_tokens_by_collection"].values()) total_words = sum(stats["total_words_by_collection"].values()) total_docs = sum(stats["doc_count_by_collection"].values()) output.append(f"\nTotal Tokens in Corpus: {total_tokens:,}") output.append(f"Total Words in Corpus: {total_words:,}") output.append(f"Total Documents in Corpus: {total_docs:,}") # Display top 10 collections by total tokens output.append("\nTop 10 Collections by Total Tokens:") for collection, count in sorted(stats["total_tokens_by_collection"].items(), key=lambda x: x[1], reverse=True)[:10]: output.append(f" - {collection}: {count:,}") # Display top 10 languages by total tokens output.append("\nTop 10 Languages by Total Tokens:") for language, count in sorted(stats["total_tokens_by_language"].items(), key=lambda x: x[1], reverse=True)[:10]: output.append(f" - {language}: {count:,}") # Display compression rate by language (top 10) output.append("\nCompression Rate by Language (Top 10):") for language, rate in sorted(stats["compression_rate_by_language"].items(), key=lambda x: x[1] if isinstance(x[1], (int, float)) else 0, reverse=True)[:10]: output.append(f" - {language}: {rate:.2f}" if isinstance(rate, (int, float)) else f" - {language}: N/A") # Display average document length by language (top 10) output.append("\nAverage Document Length (Words) by Language (Top 10):") for language, avg_len in sorted(stats["avg_doc_length_words_by_language"].items(), key=lambda x: x[1] if isinstance(x[1], (int, float)) else 0, reverse=True)[:10]: output.append(f" - {language}: {avg_len:.2f}" if isinstance(avg_len, (int, float)) else f" - {language}: N/A") # License distribution by collection (top 5 collections) output.append("\nLicense Distribution by Collection (Top 5):") for collection, licenses in list(sorted(stats["license_distribution"].items(), key=lambda x: sum(x[1].values()), reverse=True))[:5]: output.append(f" - {collection}:") for license_type, count in sorted(licenses.items(), key=lambda x: x[1], reverse=True): output.append(f" * {license_type}: {count:,}") output.append("====================================================") print("\n".join(output)) # Save to text file with open('stats_readable_output.txt', 'w') as f: f.write("\n".join(output)) # Print and save the human-readable stats print_stats(stats) # Convert to native types and save as JSON stats_native = convert_to_native_types(stats) with open('stats_by_language.json', 'w') as f: json.dump({ 'total_tokens_by_language': stats_native['total_tokens_by_language'], 'total_words_by_language': stats_native['total_words_by_language'], 'doc_count_by_language': stats_native['doc_count_by_language'], 'compression_rate_by_language': stats_native['compression_rate_by_language'], 'avg_doc_length_words_by_language': stats_native['avg_doc_length_words_by_language'], 'avg_doc_length_tokens_by_language': stats_native['avg_doc_length_tokens_by_language'], }, f, indent=4) with open('stats_by_collection.json', 'w') as f: json.dump({ 'total_tokens_by_collection': stats_native['total_tokens_by_collection'], 'total_words_by_collection': stats_native['total_words_by_collection'], 'doc_count_by_collection': stats_native['doc_count_by_collection'], 'compression_rate_by_collection': stats_native['compression_rate_by_collection'], 'avg_doc_length_words_by_collection': stats_native['avg_doc_length_words_by_collection'], 'avg_doc_length_tokens_by_collection': stats_native['avg_doc_length_tokens_by_collection'], 'license_distribution': stats_native['license_distribution'], }, f, indent=4)