Datasets:
Tasks:
Automatic Speech Recognition
Sub-tasks:
keyword-spotting
Size:
10K<n<100K
ArXiv:
Tags:
speech-recognition
License:
File size: 5,292 Bytes
afd1b94 8c6a212 afd1b94 1f8f4e7 afd1b94 8c6a212 afd1b94 1096443 afd1b94 9a07682 afd1b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
annotations_creators:
- expert-generated
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
- expert-generated
language:
- en
- fr
- it
- es
- pt
- de
- nl
- ru
- pl
- cs
- ko
- zh
language_bcp47:
- en
- en-GB
- en-US
- en-AU
- fr
- it
- es
- pt
- de
- nl
- ru
- pl
- cs
- ko
- zh
license:
- cc-by-4.0
multilinguality:
- multilingual
pretty_name: 'MInDS-14'
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
- speech-processing
task_ids:
- speech-recognition
- keyword-spotting
---
# MInDS-14
## Dataset Description
- **Fine-Tuning script:** [pytorch/audio-classification](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification)
- **Paper:** [Multilingual and Cross-Lingual Intent Detection from Spoken Data](https://arxiv.org/abs/2104.08524)
- **Total amount of disk used:** ca. 500 MB
MINDS-14 is training and evaluation resource for intent detection task with spoken data. It covers 14
intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties.
## Example
MInDS-14 can be downloaded and used as follows:
```py
from datasets import load_dataset
minds_14 = load_dataset("PolyAI/minds14", "fr-FR") # for French
# to download all data for multi-lingual fine-tuning uncomment following line
# minds_14 = load_dataset("PolyAI/all", "all")
# see structure
print(minds_14)
# load audio sample on the fly
audio_input = minds_14["train"][0]["audio"] # first decoded audio sample
intent_class = minds_14["train"][0]["intent_class"] # first transcription
intent = minds_14["train"].features["intent_class"].names[intent_class]
# use audio_input and language_class to fine-tune your model for audio classification
```
## Dataset Structure
We show detailed information the example configurations `fr-FR` of the dataset.
All other configurations have the same structure.
### Data Instances
**fr-FR**
- Size of downloaded dataset files: 471 MB
- Size of the generated dataset: 300 KB
- Total amount of disk used: 471 MB
An example of a datainstance of the config `fr-FR` looks as follows:
```
{
"path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
"audio": {
"path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
"array": array(
[0.0, 0.0, 0.0, ..., 0.0, 0.00048828, -0.00024414], dtype=float32
),
"sampling_rate": 8000,
},
"transcription": "je souhaite changer mon adresse",
"english_transcription": "I want to change my address",
"intent_class": 1,
"lang_id": 6,
}
```
### Data Fields
The data fields are the same among all splits.
- **path** (str): Path to the audio file
- **audio** (dict): Audio object including loaded audio array, sampling rate and path ot audio
- **transcription** (str): Transcription of the audio file
- **english_transcription** (str): English transcription of the audio file
- **intent_class** (int): Class id of intent
- **lang_id** (int): Id of language
### Data Splits
Every config only has the `"train"` split containing of *ca.* 600 examples.
## Dataset Creation
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
All datasets are licensed under the [Creative Commons license (CC-BY)](https://creativecommons.org/licenses/).
### Citation Information
```
@article{DBLP:journals/corr/abs-2104-08524,
author = {Daniela Gerz and
Pei{-}Hao Su and
Razvan Kusztos and
Avishek Mondal and
Michal Lis and
Eshan Singhal and
Nikola Mrksic and
Tsung{-}Hsien Wen and
Ivan Vulic},
title = {Multilingual and Cross-Lingual Intent Detection from Spoken Data},
journal = {CoRR},
volume = {abs/2104.08524},
year = {2021},
url = {https://arxiv.org/abs/2104.08524},
eprinttype = {arXiv},
eprint = {2104.08524},
timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-08524.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset
|