File size: 62,160 Bytes
c679409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
# Variable Complexity Weighted-Tempered Gibbs Samplers For Bayesian Variable Selection

Anonymous authors Paper under double-blind review

## Abstract

A subset weighted-tempered Gibbs Sampler (subset-wTGS) has been recently introduced by Jankowiak to reduce the computation complexity per MCMC iteration in high-dimensional applications where the exact calculation of the posterior inclusion probabilities (PIP) is not essential. However, the Rao-Backwellized estimator associated with this sampler has a very high variance as the ratio between the signal dimension, P, and the number of conditional PIP estimations is large. In this paper, we design a new subset-wTGS where the expected number of computations of conditional PIPs per MCMC iteration can be much smaller than P. Different from the subset-wTGS and wTGS, our sampler has a variable complexity per MCMC iteration. We provide an upper bound on the variance of an associated RaoBlackwellized estimator for this sampler at a finite number of iterations, T, and show that the variance is O PS
2 log T
Tfor any given dataset where S is the expected number of conditional PIP computations per MCMC iteration.

## 1 Introduction

Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a known function. MCMC methods are primarily used for calculating numerical approximations of multi-dimensional integrals, for example in Bayesian statistics, computational physics (Kasim et al., 2019), computational biology, (Gupta & Rawlings, 2014), and linear models (Truong, 2022). Monte Carlo algorithms have been very popular over the last decade (Hesterberg, 2002; Robert & Casella, 2005). Many practical problems in statistical signal processing, machine learning and statistics, demand fast and accurate procedures for drawing samples from probability distributions that exhibit arbitrary, non-standard forms (Andrieu et al.,
2004; Fitzgerald, 2001; Read et al., 2012). One of the most popular Monte Carlo methods are the families of Markov chain Monte Carlo (MCMC) algorithms (Andrieu et al., 2004; Robert & Casella, 2005) and particle filters (Bugallo et al., 2007). Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference (Wills & Schön, 2023). The MCMC techniques generate a Markov chain with a pre-established target probability density function as invariant density (Liang et al.,
2010).

Gibbs sampler (GS) is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations from a specific multivariate probability distribution. This sequence can be used to approximate the joint distribution, the marginal distribution of one of the variables, or some subset of the variables. It can be also used to compute the expected value (integral) of one of the variables (Bishop, 2006; Bolstad, 2010).

GS is applicable when the joint distribution is not known explicitly or is difficult to sample from directly, but the conditional distribution of each variable is known and is easy (or at least, easier) to sample from.

The GS algorithm generates an instance from the distribution of each variable in turn, conditional on the current values of the other variables. It can be shown that the sequence of samples constitutes a Markov chain, and the stationary distribution of that Markov chain is just the sought-after joint distribution.

GS is commonly used as a means of statistical inference, especially Bayesian inference. However, pure Markov chain based schemes (i.e., ones which simulate from precisely the right target distribution with no need for subsequent importance sampling correction) have been far more successful. This is because MCMC methods are usually much more scalable to high-dimensional situations, whereas importance sampling weight variances tend to grow (often exponentially) with dimension. (Zanella & Roberts, 2019) proposed a natural way to combine the best of MCMC and importance sampling in a way that is robust in high-dimensional contexts and ameliorates the slow mixing which plagues many Markov chain based schemes. The proposed scheme is called Tempered Gibbs Sampler (TGS), involving component-wise updating rule like Gibbs Sampling
(GS), with improved mixing properties and associated importance weights which remain stable as dimension increases. Through an appropriately designed tempering mechanism, TGS circumvents the main limitations of standard GS, such as the slow mixing introduced by strong posterior correlations. It also avoids the requirement to visit all coordinates sequentially, instead iteratively making state-informed decisions as to which coordinate should be next updated.

TGS has been applied to Bayesian Variable Selection (BVS) problem, observing multiple orders of magnitude improvements compared to alternative Monte Carlo schemes (Zanella & Roberts, 2019). Since TGS updates each coordinate with the same frequency, in a BVS context, this may be inefficient as the resulting sampler would spend most iterations updating variables that have low or negligible posterior inclusion probability, especially when the number of covariates, P, gets large. A better solution, called weighted Tempered Gibbs Sampling (wTGS) (Zanella & Roberts, 2019), updates more often components with a larger inclusion probability, thus having a more focused computational effort. However, despite the intuitive appeal of this approach to BVS problem, approximating the resulting posterior distribution can be computationally challenging. A principal reason for this is the astronomical size of the model space whenever there more than a few dozen covariates. To scale the high-dimensional regime, (Jankowiak, 2023) has recently introduced an efficient MCMC scheme whose cost per iteration can be significantly reduced compared to wTGS. The main idea is to introduce an auxiliary variable S ⊂ {1, 2, · · · , P} that controls which conditional posterior inclusion probabilites (PIPs) are computed in a given MCMC iteration. By choosing the size S of S to be much less than P, we can reduce the computational complexity significantly. However, this scheme contains some weaknesses such as the Rao-Blackwellized estimator associated with this sampler has a very high variance when P/S is large and the number of MCMC iterations, T, is small. In addition, generating the auxiliary random set which is uniformly distributed over PS
subsets in the subset wTGS algorithm (Jankowiak, 2023)
requires very long running time. In this paper, we design a new subset wTGS called variable complexity wTGS (VC-wTGS) and apply this algorithm to BVS in the linear regression model. More specifically, we consider the linear regression Y = Xβ+Z where β = (β0, β1*, . . . , β*P −1)
Tis controlled by an inclusion vector (γ0, γ1, · · · , γP −1). We design a Rao-Blackwellized estimator associated with VC-wTGS for *posterior inclusion probabilities* or PIPs, where PIP(i) := p(γi = 1|D) ∈ [0, 1], and D = {*X, Y* } is the observed dataset. Experiments show that our scheme converges to PIPs very fast for simulated datasets and that the variance of the Rao-Blackwellized estimator can be much smaller than the subset wTGS (Jankowiak, 2023) when P/S is very high for MNIST dataset. More specifically, our contributions include:
- We propose a new subset wTGS, called VC-wTGS, where the expected number of conditional PIP
computations per MCMC can be much smaller than the signal dimension.

- We analyse the variance of an associated Rao-Blackwellized estimator at each finite number of MCMC iterations. We show that this variance is Olog T
TPS
2for any given dataset.

- We provide some experiments on a simulated dataset (multivariate Gaussian dataset) and the real dataset (MNIST). Experiments show that our estimator can have a better variance than the subset wTGS-based estimator (Jankowiak, 2023) at high P/S for the same number of MCMC iterations T.

Although we limit our application to the linear regression model for the simplicity of computations of the conditional PIPs in experiments, our subset wTGS can be applied to other BVS models. However, we need to change the method to estimate the conditional PIPs for each model. See (148) and Appendix E for the method that is used to estimate the conditional PIPs for the linear regression model.

## 2 Preliminaries 2.1 Mathematical Backgrounds

Let a Markov chain {Xn}∞
n=1 on a state space S with transition kernel Q(*x, dy*) and the initial state X1 ∼ ν, where S is a Polish space in R. In this paper, we consider the Markov chains which are irreducible and positive-recurrent, so the existence of a stationary distribution π is guaranteed. An irreducible and recurrent Markov chain on an infinite state-space is called Harris chain (Tuominen & Tweedie, 1979). A Markov chain is called *reversible* if the following detailed balance condition is satisfied:

$$\pi(d x)Q(x,d y)=\pi(d y)Q(y,d x),\qquad\forall x,y\in{\mathcal{S}}.$$
π(dx)Q(*x, dy*) = π(dy)Q(y, dx), ∀x, y ∈ S. (1)
Define

$$(1)$$
$$\begin{array}{r l}{d(t):=\operatorname*{sup}_{x\in{\mathcal{S}}}d_{\mathrm{TV}}(Q^{t}(x,\cdot),\pi)}\\ {t_{\operatorname*{mix}}(\varepsilon):=\operatorname*{min}\{t:d(t)\leq\varepsilon\},}\end{array}$$
$$\left(2\right)$$
$$\left({\mathrm{3}}\right)$$
$$\left(4\right)$$
t(x, ·), π) (2)
tmix(ε) := min{t : d(t) ≤ ε}, (3)
and

$$\tau_{\mathrm{min}}:=\operatorname*{inf}_{0\leq\varepsilon\leq1}t_{\mathrm{mix}}(\varepsilon)\bigg(\frac{2-\varepsilon}{1-\varepsilon}\bigg)^{2},\quad t_{\mathrm{mix}}:=t_{\mathrm{mix}}(1/4).$$

Let L2(π) be the Hilbert space of complex valued measurable functions on S that are square integrable w.r.t.

π. We endow L2(π) with inner product ⟨*f, g*⟩ := Rfg∗dπ, and norm ∥f∥2,π := ⟨*f, f*⟩
1/2 π . Let Eπ be the associated averaging operator defined by (Eπ)(*x, y*) = π(y), ∀x, y ∈ S, and

$$\lambda=\|Q-E_{\pi}\|_{L_{2}(\pi)\to L_{2}(\pi)},$$
$$\left(5\right)$$
$$(6)$$
λ = ∥Q − Eπ∥L2(π)→L2(π), (5)
where ∥B∥L2(π)→L2(π) = maxv:∥v∥2,π=1 ∥Bv∥2,π. Q can be viewed as a linear operator on L2(π), denoted by Q, defined as (Qf)(x) := EQ(x,·)(f), and the reversibility is equivalent to the self-adjointness of Q. The operator Q acts on measures on the left, creating a measure µQ, that is, for every measurable subset A of S, µQ(A) := Rx∈S Q(*x, A*)µ(dx). For a Markov chain with stationary distribution π, we define the *spectrum* of the chain as

$$S_{2}:=\big\{\xi\in\mathbb{C}:(\xi\mathbf{I}-\mathbf{Q}){\mathrm{~is~not~invertible~on~}}L_{2}(\pi)\big\}.$$
S2 := ξ ∈ C : (ξI − Q) is not invertible on L2(π)	. (6)
It is known that λ = 1 − γ
∗(Paulin, 2015), where

$$\gamma^{*}:={\begin{cases}1-\operatorname*{sup}\{|\xi|:\xi\in{\mathcal{S}}_{2},\xi\neq1\},\\ \quad\quad\quad{\mathrm{if~eigenvalue~}}1{\mathrm{~has~multiplicity~}}1,\\ 0,\quad\quad\quad{\mathrm{otherwise}}\end{cases}}$$

is the *the absolute spectral gap* of the Markov chain. The absolute spectral gap can be bounded by the mixing time tmix of the Markov chain by the following expression:

$$\left({\frac{1}{\gamma^{*}}}-1\right)\log2\leq t_{\mathrm{mix}}\leq{\frac{\log(4/\pi_{*})}{\gamma_{*}}},$$

where π∗ = minx∈S πx is the *minimum stationary probability*, which is positive if Qk > 0 (entry-wise positive)
for some k ≥ 1. See (Wolfer & Kontorovich, 2019) for more detailed discussions. In (Combes & Touati, 2019; Wolfer & Kontorovich, 2019), the authors provided algorithms to estimate tmix and γ
∗from a single trajectory.

Let M(S) be a measurable space on S and define

$$\mathcal{M}_{2}:=\left\{\nu\ \ \text{defined on}\ \ \mathcal{M}(\mathcal{S}):\nu<<\pi,\left\|\frac{d\nu}{d\pi}\right\|_{2}<\infty\right\},\tag{8}$$

where *∥ · ∥*2 is the standard L2 norm in the Hilbert space of complex valued measurable functions on S.

$$\mathbf{\Pi}(7)$$

## 2.2 Problem Set-Up

Consider the linear regression Y = Xβ + Z ∈ R
N where β = (β0, β1*, . . . , β*P −1)
T, Z = (Z0, Z1*, . . . , Z*P −1)
T,
and X ∈ R
N×P which is a designed matrix. Denote γ by the vector (γ0, γ1, · · · , γP −1) where each γi ∈ {0, 1}
controls whether the coefficient βi and the i-th covariate are included (γi = 1) or excluded (γi = 0) from the model. Let βγ be the restriction of β to the coordinates in γ and |γ| ∈ {0, 1, 2, · · · , P} be the total number of included covariates. In addition, the following are assumed:

- inclusion variables: γi ∼ Bern(h)
- noise variance: σ 2 γ ∈ InvGamma12 ν0, 1 2 ν0λ0

- coefficients: βγ ∼ N (0, σ2 γ τ
−1I|γ|)
- noise distributions: Zi ∼ N (0, σ2 γ
)
for all i = 0, 1, · · · , P − 1. The hyperparameter h ∈ (0, 1) controls the overall level of sparsity; in particular hP is the expected number of covariates included a priori. The |γ| coefficients βγ ∈ R
|γ| are governed by the standard Gaussian prior with precision proportional to τ > 0.

An attractive feature of the model is that it explicitly reasons about variable inclusion and allows us to define *posterior inclusion probabilities* or PIPs, where

$$\mathbf{P}\mathbf{I}\mathbf{P}(i):=p(\gamma_{i}=1|{\mathcal{D}})\in[0,1],$$
$$({\mathfrak{g}})$$

PIP(i) := p(γi = 1|D) ∈ [0, 1], (9)
and D = {*X, Y* } is the observed dataset.

## 3 Main Results 3.1 Introduction To Subset Wtgs

In this subsection, we review the subset wTGS which was proposed by (Jankowiak, 2023). Let P =
{1, 2, · · · , P} and PS be the set of all subsets of cardinality S of P. Consider the sample space P×{0, 1}
P ×PS
and define the following (unnormalized) target distribution on this sample space:

f(γ, i, S) := p(γ|D) 1 2 η(γ−i) p(γi|γ−i, D) U(S|i, A). (10)
Here, S ranges over all the subsets of {1, 2, · · · , P} of some size S ∈ {0, 1, · · · , P} that also contain a fixed
'anchor' set A ⊂ {1, 2, · · · , P} of size *A < S*, and η(·) is some weighting function. Moreover, U(S|i, A) is the uniform distribution over the all size S subsets of {1, 2, · · · , P} that contain both i and A.

In practice, the set A can be chosen during burn-in. Subset wTGS proceeds by defining a sampling scheme for the target distribution (10) that utilizes Gibbs updates w.r.t. i and S and Metropolized-Gibbs update w.r.t. γi.

- i**-updates:** Marginalizing i from (10) yields

$${\mathrm{yields}}$$
$$f(\gamma,{\mathcal{S}})=p(\gamma|{\mathcal{D}})\phi(\gamma,{\mathcal{S}})$$
f(γ, S) = p(γ|D)ϕ(γ, S) (11)
$$\mathrm{Trginali}\mathrm{ein}$$

where we define

$$(11)$$
$$\phi(\gamma,{\mathcal{S}}):=\sum_{i\in{\mathcal{S}}}{\frac{{\frac{1}{2}}\eta(\gamma_{-i})}{p(\gamma_{i}|\gamma_{-i},{\mathcal{D}})}}{\mathcal{U}}({\mathcal{S}}|i,{\mathcal{A}})$$
$$\left(12\right)$$

and have leveraged that U(S|i, A) = 0 if i /∈ S. Crucially, computing ϕ(γ, S) is Θ(S) instead of Θ(P). We can do Gibbs updates w.r.t. i using the distribution

$$f(i|\gamma,{\mathcal{S}})\sim\frac{\eta(\gamma_{-i})}{p(\gamma_{i}|\gamma_{-i},{\mathcal{D}})}{\mathcal{U}}({\mathcal{S}}|i,{\mathcal{A}}).$$
$$(13)$$

- γ**-updates:** Just as for *wT GS* we utilized Metropolized -Gibbs updates w.r.t. γi that result in deterministic flips γi → 1 − γi. Likewise the marginal f(i) is proportional to PIP(i) + εP
so that the sampler focuses computational efforts on large PIP covariates (Jankowiak, 2023).

- S**-updates:** S is updated with Gibbs moves, *S ∼ U*(·|i, A). For the full algorithm, see the Algorithm 1.

Algorithm 1 The Subset S-wTGS Algorithm Input: Dataset D = {*X, Y* } with P covariates; prior inclusion probability h; prior precision τ ; subset size S; anchor set size A; total number of MCMC iterations T; number of burn-in iteration Tburn.

Output: Approximate weighted posterior samples {ρ
(t), γ(t)}
T
t=Tburn+1 Initializations: γ
(0) = (1, 1, *· · ·* , 1), and choose A be the A covariate with exhibiting the largest correlations with Y . Choose i
(0) randomly from {1, 2, · · · , P} and S
(0) ∼ U(·|i
(0), A).

for t = 1, 2, · · · , T do Estimate S conditional PIPs p(γ
(t−1)
j|γ
(t−1)
−j, D) for all j ∈ S(t−1)
ϕ(γ
(t−1), S
(t−1)) ←Pj∈S(t−1)
1 2 η(γ
(t−1)
−j)
p(γ
(t−1)
j|γ
(t−1)
−j,D)
Estimate f(j|γ
(t−1)) ← ϕ
−1(γ
(t−1), S
(t−1))12 η(γ
(t−1)
−j)
p(γ
(t−1)
j|γ
(t−1)
−j,D)
for all j ∈ [P].

Sample i
(t) ∼ f(·|γ
(t−1))
γ
(t) ← flip(γ
(t−1)|i
(t)) where flip(γ|i) flips the i-th coordinate of γ : γi ← 1 − γi.

Sample S
(t) ∼ U(·|i
(t), A)
Compute the unnormalized weights ρ˜
(t) ← ϕ
−1(γ
(t), S
(t))
if t ≤ Tburn **then**
Adapt A using some adaptive scheme.

end if end for for t = 1, 2, · · · , T do ρ
(t) ← ρ˜
(t)
PT
s>Tburn ρ˜
(s)
end for Output: {ρ
(t), γ(t)}
T
t=1.

The details of this algorithm is described in ALG 1. The associated estimator for this sampler is defined as
(Jankowiak, 2023):

$$\mathbf{P}\mathbf{I}\mathbf{P}(i):=\sum_{t=1}^{T}\rho^{(t)}\big(\mathbf{1}\{i\in{\mathcal{S}}^{(t)}\}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},D)+\mathbf{1}\{i\notin{\mathcal{S}}^{(t)}\}\gamma_{i}^{(t)}\big).$$
i. (14)

## 3.2 A Variable Complexity Wtgs Scheme

In the subset wTGS in Subsection 3.1, the number of conditional PIP computations per MCMC iteration is fixed, i.e., it is equal to S. In the following, we propose a variable complexity-based wTGS scheme (VC-wTGS), say ALG 2, where the only requirement is that the expected number of the conditional PIP
computations per MCMC iteration is S. This means that E[St] = S, where St is the number of conditional PIP computations at the t-th MCMC iteration.

Compared with ALG 1, ALG 2 allows us to use different subset sizes at MCMC iterations. By ALG 2, the expectation of number of conditional PIP computations in each MCMC iteration is P×(S/P)+0×(1−S/P) =
S. Since we aim to bound the variance at each finite iteration T, we don't mention about Tburn in ALG 2. In practice, we usually remove some initial samples. We also use the following new version of Rao-Blackwellized

$$(14)$$

estimator:

$$\mathrm{\mathsf{P I P}}(i):=\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},{\mathcal{D}}).$$
$$\left(15\right)$$
, D). (15)
In ALG 2, Bernoulli random variables {Q(t)}
T
t=1 are used to replace for random set S in ALG 1. There are Algorithm 2 A Variable-Complexity Based wTGS Algorithm

Input: Dataset D = {*X, Y* } with P covariates; prior inclusion probability h; prior precision τ ; total
number of MCMC iterations T; subset size S.
Output: Approximate weighted posterior samples {ρ (t), γ(t)} T t=1 Initializations: γ (0) = (γ1, γ2, · · · , γP ) where γj ∼ Bern(h) for all j ∈ [P]. for t = 1, 2, · · · , T do Set Q(1) = 1. Sample a Bernoulli random variable Q(t) ∼ Bern( S P ) if t ≥ 2. if Q(t) = 1 then Estimate P conditional PIPs p(γ (t−1) j|γ (t−1) −j, D) for all j ∈ [P] ϕ(γ (t−1)) ←Pj∈[P ] 1 2 η(γ (t−1) −j) p(γ (t−1) j|γ (t−1) −j,D) Estimate f(j|γ (t−1)) ← ϕ −1(γ (t−1))12 η(γ (t−1) −j) p(γ (t−1) j|γ (t−1) −j,D) for all j ∈ [P]. Sample i (t) ∼ f(·|γ (t−1)) γ (t) ← flip(γ (t−1)|i (t)) where flip(γ|i) flips the i-th coordinate of γ : γi ← 1 − γi. Compute the unnormalized weights ρ˜ (t) ← ϕ −1(γ (t)) else
γ ρ˜
end if
end for
for t = 1, 2, · · · , T do
ρ
(t) ← ρ˜
(t)Q(t)
PT
s=1
ρ˜
(s)Q(s)
end for
# Compute the unno  $)\gets\gamma^{(t-1)}\\ )\gets\phi^{-1}(\gamma^{(t)})\\$ #. 
Output: {ρ
(t), γ(t)}
T
t=1.

two main reasons for this replacement: (1) generating a random set S from PS
subsets of [P] takes very long running time for most pairs (*P, S*), (2) the associated Rao-Blackwellized estimator usually has smaller variance with ALG 2 than ALG 1 at high P/S. See Section 4 for our simulation results.

## 3.3 Theoretical Bounds For Algorithm 2

First, we prove the following result. The proof can be found in Appendix C.

Lemma 1. Let U and V be two positive random variables such that U/V ≤ M a.s. for some constant M.

In addition, assume that on a set D with probability at least 1 − α*, we have*

$|U-\mathbb{E}[U]|\leq\varepsilon\mathbb{E}[U]$,  $|V-\mathbb{E}[V]|\leq\varepsilon\mathbb{E}[V]$,
for some 0 ≤ ε < 1*. Then, it holds that*

$$\mathbb{E}\left[\left|{\frac{U}{V}}-{\frac{\mathbb{E}[U]}{\mathbb{E}[V]}}\right|^{2}\right]\leq{\frac{4\varepsilon^{2}}{(1-\varepsilon)^{2}}}\left({\frac{\mathbb{E}[U]}{\mathbb{E}[V]}}\right)^{2}+\left[\operatorname*{max}\left(M,{\frac{\mathbb{E}[U]}{\mathbb{E}[V]}}\right)\right]^{2}\alpha.$$

2α. (18)
We also recall the following Hoeffding's inequality for Markov chain:

$$\begin{array}{l}{(16)}\\ {(17)}\end{array}$$
$$(18)$$

Lemma 2. *(Rao, 2018, Theorem 1.1) Let* {Yi}∞
i=1 *be a stationary Markov chain with state space* [N],
transition matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1 *is distributed* according to π. Let λ = ∥A − Eπ∥L2(π)→L2(π) and let f1, f2, · · · , fn : [N] → R *so that* E[fi(Yi)] = 0 *for all* i and |fi(ν)| ≤ ai for all ν ∈ [N] and all i*. Then for* u ≥ 0,

$$\mathbb{P}\biggl[\biggl|\sum_{i=1}^{n}f_{i}(Y_{i})\biggr|\geq u\biggl(\sum_{i=1}^{n}a_{i}^{2}\biggr)^{1/2}\biggr]\leq2\exp\biggl(-\frac{u^{2}(1-\lambda)}{64e}\biggr).$$

Now, the following result can be shown. Lemma 3. Let

$$(19)$$
$$\phi(\gamma):=\sum_{j\in[P]}{\frac{{\frac{1}{2}}\eta(\gamma_{-j})}{p(\gamma_{j}|\gamma_{-j},\mathcal{D})}}$$
$$(20)$$
$$(21)$$
$$(22)$$

and define f(γ) := ϕ(γ)p(γ|D). (21)
Then, by ALG 2, the sequence {γ
(t), Q(t)}
T
t=1 forms a reversible Markov chain with the stationary distribution proportional to f(γ)q(Q) where q is the Bernoulli (S/P) *distribution. This Markov chain has transition kernel* K((*γ, Q*) → (γ
′, Q′)) = K∗(γ → γ
′)q(Q′) *where*

$$K^{*}(\gamma\to\gamma^{\prime})=\frac{S}{P}\sum_{j=1}^{P}f(j|\gamma)\delta(\gamma^{\prime}-f^{\mathsf{L}}i\mathfrak{p}(\gamma|j))+\biggl(1-\frac{S}{P}\biggr)\delta(\gamma^{\prime}-\gamma).$$

In the classical wTGS (Zanella & Roberts, 2019), the Markov chain {γ
(t)}
T
t=1 also form a Markov chain.

However, this Markov chain is different from the Markov chain in Lemma 3. However, the two Markov chains still have the same stationary distribution which is proportional to f(γ). See a detailed proof of Lemma 3 in Appendix B.

Lemma 4. *For the Rao-Blackwellized estimator in* (15) *which is applied to the output sequence* {ρ
(t), γ(t)}
T t=1 of ALG 2, it holds that

$$E_{i,T}:=\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},{\mathcal{D}})\to P\!I\!P(i)\tag{1}$$

as T → ∞.

Proof. By Lemma 3, {γ
(t), Q(t)}
T
t=1 forms a reversible Markov chain with stationary distribution f(γ)/Zf q(Q) where Zf =Pγ f(γ). Hence, by SLLN for Markov chain (Breiman, 1960), for any bounded function h, we have

$$\frac{1}{T}\sum_{t=1}^{T}\phi^{-1}(\gamma^{(t)})Q^{(t)}h(\gamma^{(t)})$$ $$\to\mathbb{E}_{qf(\cdot)/Z_{f}}\big{[}\phi^{-1}(\gamma)h(\gamma)Q\big{]}\tag{2}$$ $$=\sum_{Q}q(Q)\sum_{\gamma}\frac{f(\gamma)}{Z_{f}}\phi^{-1}(\gamma)h(\gamma)Q$$ $$=\bigg{(}\sum_{Q}q(Q)Q\bigg{)}\bigg{(}\sum_{\gamma}\frac{f(\gamma)}{Z_{f}}\phi^{-1}(\gamma)h(\gamma)\bigg{)}$$ (3) $$=\mathbb{E}_{q}[Q]\frac{1}{Z_{f}}\sum_{\gamma}p(\gamma|\mathcal{D})h(\gamma)$$ (4) $$=\frac{S}{P}\frac{1}{Z_{f}}\sum_{\gamma}p(\gamma|\mathcal{D})h(\gamma),\tag{5}$$
$$(23)$$

$$(28)$$

where (27) follows from f(γ) = p(γ|D)ϕ(γ).

Similarly, we have

$$\frac{1}{T}\sum_{t=1}^T Q^{(t)}\phi^{-1}(\gamma^{(t)})$$ $$\to\mathbb{E}_{qf(\cdot)/Z_f}\big[\phi^{-1}(\gamma)Q\big]$$ $$=\sum_Q q(Q)Q\sum_\gamma\frac{f(\gamma)}{Z_f}\phi^{-1}(\gamma)$$ $$=\mathbb{E}_q[Q]\sum_\gamma\frac{1}{Z_f}p(\gamma|D)$$ $$=\frac{S}{P}\frac{1}{Z_f},$$ $$=p(\gamma|D)\phi(\gamma).$$
(29)  $\binom{30}{2}$  . 
$$(31)$$
$$(32)$$
$$(33)$$
$$(34)$$

where (31) also follows from f(γ) = p(γ|D)ϕ(γ).

From (28) and (32), we obtain

$$\begin{array}{l}{{\frac{1}{T}\sum_{t=1}^{T}\phi^{-1}(\gamma^{(t)})Q^{(t)}h(\gamma^{(t)})}}\\ {{\frac{1}{T}\sum_{t=1}^{T}Q^{(t)}\phi^{-1}(\gamma^{(t)})}}\end{array}\to\sum_{\gamma}p(\gamma|{\mathcal{D}})h(\gamma),$$

or equivalently

$$\sum_{t=1}^{T}\rho^{(t)}h(\gamma^{(t)})\to\sum_{\gamma}p(\gamma|{\mathcal D})h(\gamma)$$

as T → ∞.

Now, by setting h(γ) = p(γi = 1|γ−i, D), from (34), we obtain

$$\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},{\mathcal{D}})\to{\tt PIP}(i)\tag{1}$$

for all i ∈ [P]. The following result bounds the variance of PIP estimator at finite T.

Lemma 5. For any ε ∈ [0, 1], let ν and π *be the initial and stationary distributions of the reversible Markov* sequence γ
(t), Q(t)	*. Define*

$$(35)$$
$$\hat{\phi}(\gamma):=\frac{\phi^{-1}(\gamma)}{\operatorname*{max}_{\gamma}\phi^{-1}(\gamma)},$$
$$(36)$$

and

$$\varepsilon_{0}=\frac{P}{P I P(i)\mathbb{E}_{\pi}[\hat{\phi}(\gamma)]S}\sqrt{\frac{64e\log T}{(1-\lambda_{\gamma,Q})T}}.$$

Then, we have

$$\mathbb{E}\Bigg{[}\Bigg{|}\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},\mathcal{D})-\mathit{PIP}(i)\Bigg{|}^{2}\Bigg{]}$$ $$\leq\frac{4\varepsilon_{0}^{2}}{(1-\varepsilon_{0})^{2}}\mathit{PIP}^{2}(i)+\frac{4P}{S}\frac{1}{\min_{\gamma}\pi(\gamma)T}\to0,$$  which is true. Hence ($\gamma$) is the same as the distribution of $p(\gamma)$

as T → ∞ for fixed P, S and the dataset. Here, π(γ) is the marginal distribution of π(*γ, Q*).

$$(37)$$
$$(38)$$

Proof. See Appendix D.

Remark 6. *As in the proof of Lemma 3, we have* π(γ) ∼ f(γ) = ϕ(γ)p(γ|D)*. Hence, it holds that*

$$\min_{\gamma}\pi(\gamma)=\min_{\gamma}\frac{\phi(\gamma)p(\gamma|\mathcal{D})}{\sum_{\gamma}\phi(\gamma)p(\gamma|\mathcal{D})},\tag{1}$$
$$(39)$$

which does not depend on S.

Next, we provide a lower bound for 1 − λγ,Q. First, we recall the following Dirichlet form on spectral gap.

Definition 7. Let *f, g* : Ω → R*. The Dirichlet form associated with a reversible Markov chain* Q on Ω is defined by

$$\mathcal{E}(f,g)=\langle(\mathbf{I}-\mathbf{Q})f,g\rangle_{\pi}$$ $$=\sum_{x\in\Omega}\pi(x)[f(x)-\mathbf{Q}f(x)]g(x)$$ $$=\sum_{x,y\in\Omega\times\Omega}\pi(x)Q(x,y)g(x)(f(x)-f(y)).$$

$$(42)$$

Lemma 8. *(Diaconis & Saloff-Coste, 1993) (Variational characterisation) For a reversible Markov chain* Q with state space Ω and stationary distribution π*, it holds that*

$$1-\lambda=\inf_{\begin{subarray}{c}g\to0,\,g=\{g^{2}\}=1\\ \mathbb{E}_{\pi}[g]=0,\,\mathbb{E}_{\pi}[g^{2}]=1\end{subarray}}\mathcal{E}(g,g),$$
$$(43)$$
$$(444)$$

where E(*g, g*) := ⟨(I − Q)*g, g*⟩π. Lemma 9. The spectral gap 1 − λγ,Q *of the reversible Markov chain* {γ
(t), Q(t)} *satisfies*

$$1-\lambda_{\gamma,Q}\geq{\frac{S}{P}}{\big(}1-\lambda_{P}{\big)}+1-{\frac{S}{P}}\geq1-{\frac{S}{P}},$$

where 1 − λP *is the spectral gap of the reversible Markov chain* {γ
(t)} *of the wTGS algorithm (i.e.* S = P).

See Appendix F for a proof of this lemma. By combining Lemma 4, Lemma 5 and Lemma 9, we come up with the following theorem. Theorem 10. *For the variable-complexity subset wTGS-based estimator in* (15) and given dataset (*X, Y* ), it holds that

$$E_{i,T}:=\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},{\cal D})\to P\!I\!P(i)\tag{1}$$
$$(45)$$

as T → ∞ and

$$\mathbb{E}\Bigg{[}\Bigg{|}\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}|\gamma_{-i}^{(t)},\mathcal{D})-\textit{PIP}(i)\Bigg{|}^{2}\Bigg{]}$$ $$=O\Bigg{(}\frac{\log T}{T}\Bigg{(}\frac{P}{S}\Bigg{)}^{2}\Bigg{(}\frac{\max_{\gamma}\phi(\gamma)}{\min_{\gamma}\phi(\gamma)}\Bigg{)}^{2}\Bigg{)},$$

where

$$\phi(\gamma)=\frac{1}{2}\sum_{j\in[P]}\frac{p(\gamma_{j}=1|\gamma_{-j},\mathcal{D})}{p(\gamma_{j}|\gamma_{-j},\mathcal{D})}.$$
$$\quad(46)$$
$$(47)$$

Proof. First, (45) is shown in Lemma 4. Now, we show (46) by using Lemma 5 and Lemma 9.

Observe that

$$\mathbb{E}_{\pi}[\hat{\phi}(\gamma)]=\mathbb{E}_{\pi}\left[\frac{\phi^{-1}(\gamma)}{\max_{\gamma}\phi^{-1}(\gamma)}\right]$$ $$\geq\frac{\min_{\gamma}\phi(\gamma)}{\max_{\gamma}\phi(\gamma)}.\tag{1}$$

In addition, we have

$$(48)$$
$$\phi(\gamma)=\sum_{j\in[P]}\frac{\frac{1}{2}\eta(\gamma_{-j})}{p(\gamma_{j}|\gamma_{-j},\mathcal{D})}$$ $$=\frac{1}{2}\sum_{j\in[P]}\frac{p(\gamma_{j}=1|\gamma_{-j},\mathcal{D})}{p(\gamma_{j}|\gamma_{-j},\mathcal{D})}.$$
(49)  $\binom{49}{50}$  (50)  . 
Now, note that

$$\frac{p(\gamma_{j}=1|\gamma_{-j},\mathcal{D})}{p(\gamma_{j}|\gamma_{-j},\mathcal{D})}=\begin{cases}1,&\gamma_{j}=1\\ \frac{p(\gamma_{j}=1|\gamma_{-j},\mathcal{D})}{p(\gamma_{j}=0|\gamma_{-j},\mathcal{D})},&\gamma_{j}=0.\end{cases}$$
$$\left(51\right)$$

In Appendix E, show how to estimate the conditional PIPs, i.e., p(γi|D, γ−i) for the linear regression model.

More specially, we have

$$p(\gamma_{i}|\mathcal{D},\gamma_{-i})=\frac{p(\gamma_{i}|\mathcal{D},\gamma_{-i})}{p(1-\gamma_{i}|\mathcal{D},\gamma_{-i})}\left(1+\frac{p(\gamma_{i}|\mathcal{D},\gamma_{-i})}{p(1-\gamma_{i}|\mathcal{D},\gamma_{-i})}\right)^{-1}.\tag{52}$$

Then, we can estimate p(γj=1|γ−j ,D)
p(γj=0|γ−j ,D)
based on the dataset. More specifically, let γ˜1 is given by γ−i with γi = 1, γ˜0 is given by γ−i with γi = 0, then we can show that

$$\frac{p(\gamma_{j}=1|\gamma_{-j},\mathcal{D})}{p(\gamma_{j}=0|\gamma_{-j},\mathcal{D})}$$ $$=\left(\frac{h}{1-h}\right)\sqrt{\tau\frac{\det(X_{i,0}^{T}X_{i0}+\tau I)}{\det(X_{i,1}^{T}X_{i1}+\tau I)}}$$ $$\quad\times\left(\frac{\|Y\|^{2}-\|\tilde{Y}_{i0}\|^{2}+\nu_{0}\lambda_{0}}{\|Y\|^{2}-\|\tilde{Y}_{i1}^{2}\|^{2}+\nu_{0}\lambda_{0}}\right)^{\frac{N+\tau_{0}}{2}}.\tag{53}$$  $\tau_{\tau}^{T}X_{\tau}+\tau I)^{-1}X_{\tau}^{T}Y$.  
Here, $\|\hat{Y}_{\gamma}\|^2=\hat{Y}_{\gamma}^T\hat{Y}_{\gamma}=Y^T X_{\gamma}(X_{\gamma}^T X_{\gamma}+\tau I)^{-1}X_{\gamma}^T Y$. 
Using this algorithm, if pre-computing XT X is not possible, the computational complexity per conditional PIP is O(N|γ| 2 +|γ| 3 +P|γ| 2). Otherwise, if pre-computing XT X is possible, the computational complexity per conditional PIP is O(|γ| 3 + P|γ| 2).

Remark 11. *As we can see in Appendix E, for the linear regression model in Section 2.2, if pre-computing* XT X *is not possible, the computational complexity for a conditional PIP is* O(N|γ| 2 + |γ| 3 + P|γ| 2). Otherwise, if pre-computing XT X *is possible, the computational complexity for a conditional PIP is* O(|γ| 3+P|γ| 2).

Here, |γ| ≈ hP*. Hence, the average computational complexity for our algorithm is* O(S(N|γ| 2+|γ| 3+P|γ| 2))
or O(S(|γ| 3 + P|γ| 2)) which depends on whether the precomputing of XT X *is possible or not. To reduce* the computational complexity, we can reduce S, or we are only interested in the case P/S *is large. This* computational complexity reductions is more meaningful if |γ| ≈ P h << P*, i.e., we consider the sparse* linear regression regimes. However, the variance of the associated Rao-Blackwellized estimator is increased as S *becomes small. Hence, there is a trade-off between the computational complexity per MCMC iteration* vs. the variance of of the Rao-Blackwellized estimator. The most interesting fact is that the newly-designed Rao-Blackwellized estimator converges to PIPs for any value of S. In practice, the choice of S *depends on* each application and the availability of computational resources. We can choose S *very small (eg.,* S = 2)
to have a low complexity estimator and low convergence rate. We can choose S ≈ P for a high complexity estimator with high convergence rate. Furthermore, both our and Jankowiak algorithms are degenerated to the wTGS (Zanella & Roberts (2019)) at S ≈ P.

## 4 Experiments

In this section, we show by simulation that the PIP-estimator is convergent as T → ∞. In addition, we compare the variance of associated Rao-Blackwellized estimators for VC-wTGS and subset wTGS on simulated and real datasets. To compute p(γi|γ−i, Y ), we use the same trick as (Zanella & Roberts, 2019, Appendix B.1) for the new setting. See our derivations of this posterior distribution in Appendix E. As
(Jankowiak, 2023), in ALG 1 and ALG 2, we choose

$$\eta(\gamma_{-i})=\mathbb{P}(\gamma_{i}=1|\gamma_{-i},{\mathcal{D}}).$$
$$(54)$$
η(γ−i) = P(γi = 1|γ−i, D). (54)

## 4.1 Simulated Datasets

First, we perform a simulated experiment. Let X ∈ R
N×P be a realization of a multivariate (random)
Gaussian matrix. We consider the case N = 100 and P = 200. We run T = 20000 iterations. Fig. 1 shows the number of conditional PIP computations per MCMC iteration over T iterations. As we can see, our algorithm (Algorithm 2) has variable complexity where the number of conditional PIP computations per MCMC is a random variable Y which takes value on {0, P} where P(Y = P) = S/P. For Jankowiak's algorithm, the number of conditional PIP computations per MCMC is always fixed, which is equal to S.

Fig. 2 shows that the Rao-Blackwellized estimator in (15) converges to the value of PIP at T → ∞ for different values of S. Since the number of PIPs, P, is very large, we only run simulations for PIP(0) and PIP(1). The behavior of PIP(0) and PIP(1) represents the behavior of other PIPs. Since VC-wTGS converges very fast at T big enough, the variance of variable-complexity wTGS is very small in the long term. In Fig. 4, we plot the estimators of VC-wTGS, subset wTGS, and wTGS for estimating PIP(0). It can our estimator converges to wTGS estimator faster than subset wTGS. This also means that the variance of VC-wTGS is smaller than the variance of subset wTGS for the same sample complexity S.

![11_image_0.png](11_image_0.png)

Figure 1: Computational Complexity Evolution

![12_image_0.png](12_image_0.png)

Figure 2: VC-wTGS Rao-Blackwellized Estimators (ALG 2)

![12_image_1.png](12_image_1.png)

Figure 3: Convergence of Rao-Blackwellized Estimators

## 4.2 Real Datasets

In this simulation, we run ALG 2 on MNIST dataset.

As Fig. 1, Fig. 4 shows the number of conditional PIP computations per MCMC iteration over T iterations.

It shows that our algorithm has variable computational complexity per MCMC iteration, which is different from Jankowiak's algorithm. Fig. 5 plots PIP(0) and PIP(1) and the estimated variances for the Rao-Blackwellized estimator in (15)
at different values of S, respectively. Here, PIP(0) and PIP(1) are defined in (9), which are posterior inclusion probabilities that the components Po and B1 affect the output. These plots show a trade-off between the computational complexity and the estimated variance for estimating PIP(0) and PIP(1). The

![13_image_0.png](13_image_0.png) 

Figure 4: Computational Complexity Evolution
expected number of PIP computations is only ST in ALG 2 but T P in wTGS if we run T MCMC iterations.

However, we suffer an increasing in variance. By Theorem 10, the variance is O PS
2 log T
Tfor a given dataset, i.e., increasing at most (P/S)
2times. For many applications, we don't need to estimate PIPs exactly, hence VC-wTGS can be used to reduce computational complexity especially when P is very large (million covariates). Fig. 6 shows that VC-wTGS outperforms subset wTGS (Jankowiak, 2023) at high values of P/S, which shows that our newly-designed Rao-Blackwellized estimator converges to PIP faster than Jankowiak's estimator at high P/S.

## 5 Conclusion

This paper proposed a variable complexity wTGS for Bayesian Variable Selection which can improve the computational complexity of the well-known wTGS. Experiments show that our Rao-Blackwellized estimator can give a smaller variance than its counterpart associated with the subset-wTGS at high P/S.

![14_image_0.png](14_image_0.png)

Figure 5: The variance of VC-wTGS Rao-Blackwellized Estimators (ALG 2)

![14_image_1.png](14_image_1.png)

Figure 6: Comparing the variance between subset wTGS and VC-wTGS at S = 2.

## References

Christophe Andrieu, Nando de Freitas, A. Doucet, and Michael I. Jordan. An introduction to MCMC for machine learning. Machine Learning, 50:5-43, 2004.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. William M. Bolstad. Understanding Computational Bayesian Statistics. John Wiley, 2010.

L. Breiman. The strong law of large numbers for a class of Markov chains. Annals of Mathematical Statistics, 31:801-803, 1960.

Mónica F. Bugallo, Shanshan Xu, and Petar M. Djurić. Performance comparison of EKF and particle filtering methods for maneuvering targets. Digit. Signal Process., 17:774-786, 2007.

R. Combes and M. Touati. Computationally efficient estimation of the spectral gap of a markov chain.

Proceedings of the ACM on Measurement and Analysis of Computing Systems, 3:1 - 21, 2019.

Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible markov chains.

Annals of Applied Probability, 3:696-730, 1993.

William J. Fitzgerald. Markov chain Monte Carlo methods with applications to signal processing. Signal Process., 81:3–18, 2001.

Ankur Gupta and James B. Rawlings. Comparison of parameter estimation methods in stochastic chemical kinetic models: Examples in systems biology. *AIChE journal. American Institute of Chemical Engineers*,
60 4:1253–1268, 2014.

Tim Hesterberg. Monte carlo strategies in scientific computing. *Technometrics*, 44:403 - 404, 2002. Martin Jankowiak. Bayesian variable selection in a million dimensions. In *International Conference on* Artificial Intelligence and Statistics, 2023.

Muhammad F. Kasim, A. F. A. Bott, Petros Tzeferacos, Donald Q. Lamb, Gianluca Gregori, and Sam M.

Vinko. Retrieving fields from proton radiography without source profiles. *Physical review. E*, 100 3-1:
033208, 2019.

Faming Liang, Chuanhai Liu, and Raymond J. Carroll. Advanced Markov chain Monte Carlo methods:
Learning from past samples. 2010.

Daniel Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral methods.

Electronic Journal of Probability, 20(79):1 - 32, 2015.

Shravas Rao. A Hoeffding inequality for Markov chains. *Electronic Communications in Probability*, 2018.

Jesse Read, Luca Martino, and David Luengo. Efficient Monte Carlo methods for multi-dimensional learning with classifier chains. *Pattern Recognit.*, 47:1535–1546, 2012.

Christian P. Robert and George Casella. Monte carlo statistical methods. *Technometrics*, 47:243 - 243, 2005.

Lan V. Truong. On linear model with markov signal priors. In *AISTATS*, 2022. Pekka Tuominen and Richard L. Tweedie. Markov Chains with Continuous Components. Proceedings of the London Mathematical Society, s3-38(1):89–114, 01 1979.

Adrian G. Wills and Thomas Bo Schön. Sequential monte carlo: A unified review. Annu. Rev. Control.

Robotics Auton. Syst., 6:159–182, 2023.

G. Wolfer and A. Kontorovich. Estimating the mixing time of ergodic Markov chains. In 32nd Annual Conference on Learning Theory, 2019.

Giacomo Zanella and Gareth O. Roberts. Scalable importance tempering and Bayesian variable selection.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81, 2019.

## A Appendix B Proof Of Lemma 3

The transition kernel for the sequence {γ
(t)} can be written as

$$K^{*}(\gamma\to\gamma^{\prime})=\frac{S}{P}\sum_{j=1}^{P}f(j|\gamma)\delta(\gamma^{\prime}-\mathbf{flip}(\gamma|j))+\bigg(1-\frac{S}{P}\bigg)\delta(\gamma^{\prime}-\gamma).$$

This implies that for any pair (*γ, γ*′) such that γ
′ = flip(γ|i) for some i ∈ [P], we have

$(\gamma,\gamma)$ such that $\gamma^{\prime}=\mathtt{Lip}(\gamma|i)$ for some $i\in[i]$, we have  $$K^{*}(\gamma\to\gamma^{\prime})=\frac{S}{P}\sum_{j=1}^{P}f(j|\gamma)\delta(\gamma^{\prime}-\mathtt{flip}(\gamma|j))$$ $$=\frac{S}{P}f(i|\gamma).$$
$$(55)$$
$\mathbf{a}\cdot\mathbf{a}=\mathbf{a}\cdot\mathbf{a}$. 
 If $\gamma^{\prime}=\texttt{T11p}(\gamma|i)$ for some $i\in[P]$, we have $\gamma^{\prime}=\texttt{T11p}(\gamma|i)$. 
$$(56)$$
$$\left(57\right)$$
Now, by ALG 2, we also have

$$f(i|\gamma)=\phi^{-1}(\gamma)\frac{\frac{1}{2}\eta(\gamma_{-i})}{p(\gamma_{i}|\gamma_{-i},\mathcal{D})}$$

p(γi|γ−i, D)(58)
and

$$f(i|\gamma^{\prime})=\phi^{-1}(\gamma^{\prime})\frac{\frac{1}{2}\eta(\gamma_{-i}^{\prime})}{p(\gamma_{i}^{\prime}|\gamma_{-i}^{\prime},\mathcal{D})}.$$

From (58) and (59) and γ−i = γ

−i
, we obtain In addition, we also have K∗(γ → γ
′) = K∗(γ
′ → γ) = 0 if γ
′ ̸= γ and γ
′ ̸= flip(γ|i) for any i ∈ [P].

Furthermore, K∗(γ → γ
′) = K∗(γ
′ → γ) = 1 −
S
P
if γ = γ
′.

By combining all these cases, it holds that

$$f(\gamma)K^{*}(\gamma\to\gamma^{\prime})=f(\gamma^{\prime})K^{*}(\gamma^{\prime}\to\gamma)$$

for all γ
′, γ.

This means that {γ
(t)}
T
t=1 form a reversible Markov chain with stationary distribution f(γ)/Zf where

$$Z_{f}=\sum_{\gamma}f(\gamma).\tag{1}$$
$$(65)$$
$$(67)$$

Since {Qt}
T
t=1 is an i.i.d. Bernoulli sequence with q(1) = S/P and independent of {γ
(t)}
T
t=1, {γ
(t), Q(t)}
T t=1 forms a Markov chain with the transition kernel satisfying:

$$K((\gamma,Q)\to(\gamma^{\prime},Q^{\prime}))=q(Q^{\prime})K^{*}(\gamma\to\gamma^{\prime}).$$

It follows from (66) that

$$q(Q)f(\gamma)/Z_{f}K((\gamma,Q)\to(\gamma^{\prime},Q^{\prime}))=[K^{*}(\gamma\to\gamma^{\prime})f(\gamma)/Z_{f}]q(Q)q(Q^{\prime})$$
′) (67)
for any pair (*γ, Q*) and (γ
′, Q′).

Finally, from (64) and (67), we have

$$q(Q)f(\gamma)/Z_{f}K((\gamma,Q)\to(\gamma^{\prime},Q^{\prime}))=q(Q^{\prime})f(\gamma)/Z_{f}K((\gamma^{\prime},Q^{\prime})\to(\gamma,Q)).$$

This means that {γt, Q(t)}
T
t=1 forms a reversible Markov chain with stationary distribution q(Q)f(γ)/Zf .

## C Proof Of Lemma 1

Observe that with probability at least 1 − α, we have

 Let $1-\alpha$, we have  $\begin{array}{l}(1-\varepsilon)\mathbb{E}[U]\leq U\leq(1+\varepsilon)\mathbb{E}[U]\\ (1-\varepsilon)\mathbb{E}[V]\leq V\leq(1+\varepsilon)\mathbb{E}[V].\end{array}$ . 
$$\frac{K^{*}(\gamma\rightarrow\gamma^{\prime})}{K^{*}(\gamma^{\prime}\rightarrow\gamma)}=\frac{\frac{S}{P}f(i|\gamma)}{\frac{S}{P}f(i|\gamma^{\prime})}$$ $$=\frac{f(i|\gamma)}{f(i|\gamma^{\prime})}$$ $$=\frac{\phi(\gamma^{\prime})p(\gamma^{\prime}|\mathcal{D})}{\phi(\gamma)p(\gamma|\mathcal{D})}$$ $$=\frac{f(\gamma^{\prime})}{f(\gamma)}.$$
$$(58)$$
$$(59)$$
$$(60)$$
$$(61)$$
$$(62)$$
$$(63)$$
$$(64)$$
$$(68)$$
$$\begin{array}{l}{(69)}\\ {(70)}\end{array}$$
Hence, we have

$$\left({\frac{1-\varepsilon}{1+\varepsilon}}\right){\frac{\mathbb{E}[U]}{\mathbb{E}[V]}}\leq{\frac{U}{V}}\leq\left({\frac{1+\varepsilon}{1-\varepsilon}}\right){\frac{\mathbb{E}[U]}{\mathbb{E}[V]}}.$$
. (71)
From (71), with probability at least 1 − α, we have

$$(71)$$
$$\left|{\frac{U}{V}}\right.$$
$$(72)$$
(73)  $\binom{74}{7}$  . 
−
$$\left.\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\right|\leq\frac{2\varepsilon}{1-\varepsilon}\bigg{(}\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\bigg{)}.\tag{1}$$

It follows from (72) that

$$\mathbb{E}\left[\left|\frac{U}{V}-\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\right|^{2}\right]=\mathbb{E}\left[\left|\frac{U}{V}-\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\right|^{2}\right]D\right]\mathbb{P}(D)+\mathbb{E}\left[\left|\frac{U}{V}-\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\right|^{2}\right]D^{c}\right]\mathbb{P}(D^{c})$$ $$\leq\frac{4\varepsilon^{2}}{(1-\varepsilon)^{2}}\left(\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\right)^{2}+\left[\max\left(M,\frac{\mathbb{E}[U]}{\mathbb{E}[V]}\right)\right]^{2}\alpha.$$

## D Proof Of Lemma 5

First, by definition of ϕˆ(γ) in (36) we have

$$\rho^{(t)}=\frac{\hat{\phi}(\gamma^{(t)})Q^{(t)}}{\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})Q^{(t)}}.\tag{1}$$

In addition, observe that

$$0\leq{\hat{\phi}}(\gamma)\leq1.$$
0 ≤ ϕˆ(γ) ≤ 1. (76)
Now, let g : {0, 1}
P → R+ such that g(γ) ≤ 1 for all γ. Then, by applying Lemma 2 and a change of measure, with probability 1 − 2 dν dπ exp(−
ζ 2T(1−λ)
64e), we have

$$\frac{1}{T}\bigg|\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})g(\gamma^{(t)})Q^{(t)}-\mathbb{E}_{\pi}\bigg[\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})g(\gamma^{(t)})Q^{(t)}\bigg]\bigg|\leq\zeta\tag{1}$$
$$(75)$$
$$(76)$$
$$\left(77\right)$$

for any ζ > 0.

Similarly, by using Lemma 2, with probability at least 1 − 2 dν dπ exp(−
ζ 2T(1−λ)
64e), it holds that

$$\frac{1}{T}\left|\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})Q^{(t)}-\mathbb{E}_{\pi}\left[\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})Q^{(t)}\right]\right|\leq\zeta.$$

By using the union bound, with probability at least 1 − 4 dν dπ exp(−
ζ 2T(1−λ)
64e), it holds that

$$\frac{1}{T}\bigg{|}\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})g(\gamma^{(t)})Q^{(t)}-\mathbb{E}_{\pi}\bigg{[}\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})g(\gamma^{(t)})Q^{(t)}\bigg{]}\bigg{|}\leq\zeta,$$  $$\frac{1}{T}\bigg{|}\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})-\mathbb{E}_{\pi}\bigg{[}\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})\bigg{]}\bigg{|}\leq\zeta.$$
$$(78)$$
$$\begin{array}{c}{{(79)}}\\ {{}}\end{array}$$  $$\begin{array}{c}{{(80)}}\\ {{}}\end{array}$$

Now, by setting ζ = ζ0 := ε T min Eπ PT
t=1 ϕˆ(γ
(t))g(γ
(t))Q(t), Eπ PT
t=1 ϕˆ(γ
(t))	 for some ε > 0 (to be chosen later), with probability at least 1 − 4 dν dπ exp(−
ζ 2 0 T(1−λ)
64e), it holds that

1 T  X T t=1 ϕˆ(γ (t))g(γ (t))Q (t) − Eπ X T t=1 ϕˆ(γ (t))g(γ (t))Q (t)  ≤ ε T Eπ X T t=1 ϕˆ(γ (t))g(γ (t))Q (t) , (81) 1 T  X T t=1 ϕˆ(γ (t))Q (t) − Eπ X T t=1 ϕˆ(γ (t))Q (t)  ≤ ε T Eπ X T t=1 ϕˆ(γ (t))Q (t) . (82)
(83)  $\binom{84}{84}$  . 
$$(86)$$
Furthermore, by setting

$$\begin{array}{l}{{U:=\frac{1}{T}\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})g(\gamma^{(t)})Q^{(t)},}}\\ {{V:=\frac{1}{T}\sum_{t=1}^{T}\hat{\phi}(\gamma^{(t)})Q^{(t)},}}\end{array}$$

we have

$$\frac{U}{V}=\frac{\sum_{t=1}^{T}\phi^{-1}(\gamma^{(t)})g(\gamma^{(t)})Q^{(t)}}{\sum_{t=1}^{T}\phi^{-1}(\gamma^{(t)})Q^{(t)}}$$ $$=\sum_{t=1}^{T}\rho^{(t)}g(\gamma^{(t)})$$
$$(85)$$

and

$$M:=\operatorname*{sup}(U/V)\leq1$$
$$(8{\overline{{7}}})$$
M := sup(U/V ) ≤ 1 (87)
since PT
t=1 ρ
(t) = 1 and g(γ
(t)) ≤ 1 for all γ
(t).

From (80)-(87), by Lemma 1, we have

$$\mathbb{E}\bigg{[}\bigg{|}\sum_{t=1}^{T}\rho^{(t)}g(\gamma^{(t)})Q^{(t)}-\frac{\mathbb{E}_{\pi}[U]}{\mathbb{E}_{\pi}[V]}\bigg{|}^{2}\bigg{]}\leq\frac{4c^{2}}{(1-\varepsilon)^{2}}\bigg{(}\frac{\mathbb{E}_{\pi}[U]}{\mathbb{E}_{\pi}[V]}\bigg{)}^{2}+\bigg{[}\max\bigg{(}1,\frac{\mathbb{E}_{\pi}[U]}{\mathbb{E}_{\pi}[V]}\bigg{)}\bigg{]}^{2}\alpha,\tag{88}$$  $\frac{d\varepsilon}{d\pi}\exp\left(-\frac{\varepsilon^{2}T(1-\lambda_{\gamma,Q})\min\{\mathbb{E}_{\pi}[U],\mathbb{E}_{\pi}[V]\}^{2}}{\varepsilon^{4}\varepsilon}\right)$, where $\lambda_{\gamma,Q}$ is the stationary distribution of the reversible 

where α := 4 dν
Markov chain {γ
(t), Q(t)}.
Now, by setting

$$\varepsilon=\varepsilon_{0}=\frac{1}{\operatorname*{min}\{\mathbb{E}_{\pi}[U],\mathbb{E}_{\pi}[V]\}}\sqrt{\frac{64e\log T}{(1-\lambda_{\gamma,Q})T}},$$  which is a $\varepsilon$-function.  
we have α = 4 dν dπ 1 T
. Then, we obtain

 So if  $ \mathbb{E}\bigg[\bigg|\sum_{t=1}^T\rho^{(t)}g(\gamma^{(t)})-\frac{\mathbb{E}_\pi[U]}{\mathbb{E}_\pi[V]}\bigg|^2\bigg]\leq\frac{4\varepsilon_0^2}{(1-\varepsilon_0)^2}\bigg(\frac{\mathbb{E}_\pi[U]}{\mathbb{E}_\pi[V]}\bigg)^2+\bigg[\max\bigg(1,\frac{\mathbb{E}_\pi[U]}{\mathbb{E}_\pi[V]}\bigg)\bigg]^2\alpha.$  that is. 

2α. (90)
Now, observe that

$$\mathbb{E}_{\pi}[U]=\frac{\mathbb{E}_{\pi}\big{[}g(\gamma)Q\hat{\phi}(\gamma)\big{]}}{\mathbb{E}_{\pi}\big{[}\hat{\phi}(\gamma)Q\big{]}}$$ $$=\frac{\mathbb{E}_{\pi}\big{[}g(\gamma)Q\phi^{-1}(\gamma)\big{]}}{\mathbb{E}_{\pi}\big{[}\phi^{-1}(\gamma)Q\big{]}}.$$
$$(89)$$
$$(90)$$
(91)  $\binom{92}{92}$  . 
On the other hand, by Lemma 3, we have π(*γ, Q*) = q(Q)f(γ)
Zfwhere Zf := Pγ f(γ) and f(γ) = p(γ|D)ϕ(γ).

It follows that

$$\mathbb{E}_{\pi}\left[g(\gamma)Q\phi^{-1}(\gamma)\right]=\mathbb{E}_{q(Q)f(\gamma)/Z_{f}}\left[g(\gamma)Q\phi^{-1}(\gamma)\right]$$ $$=\sum_{\gamma}\sum_{Q}g(\gamma)Q\phi^{-1}(\gamma)\frac{f(\gamma)}{Z_{f}}q(Q)$$ $$=\frac{1}{Z_{f}}\sum_{\gamma}\sum_{Q}g(\gamma)q(Q)Qp(\gamma|\mathcal{D})$$ $$=\frac{1}{Z_{f}}\mathbb{E}_{p(\gamma|\mathcal{D})}\left[g(\gamma)\right]\mathbb{E}_{q}[Q].$$
$$(93)$$
$$(94)$$
$$(95)$$
$$({\mathfrak{g h}})$$

Similarly, we have

$$\mathbb{E}_{\pi}\left[\phi^{-1}(\gamma)Q\right]=\mathbb{E}_{q(Q)f(\gamma)/Z_{f}}\left[\phi^{-1}(\gamma)Q\right]$$ $$=\sum_{Q}\sum_{\gamma}\phi^{-1}(\gamma)Q\frac{f(\gamma)}{Z_{f}}q(Q)$$ $$=\frac{1}{Z_{f}}\bigg{(}\sum_{\gamma}P(\gamma|\mathcal{D})\bigg{)}\mathbb{E}_{q}[Q].$$
$$(97)$$
$$(98)$$
$$(99)$$
$$(100)^{\frac{1}{2}}$$

From (92), (96) and (99), we obtain

$$\mathbb{E}_{\pi}[U]=\mathbb{E}_{p(\gamma|\mathcal{D})}\left[g(\gamma)\right].\tag{1}$$

For the given problem, by setting g(γ) = p(γi = 1|γ−i, D), from (100), we have

$$\mathbb{E}_{\pi}[U]=\mathbb{P}\mathbb{P}(i).\tag{1}$$
$$(101)$$
$$\mathbb{E}_{\pi}[V]=\mathbb{E}_{\pi}\big{[}\hat{\phi}(\gamma)Q\big{]}$$ $$=\sum_{\gamma,Q}\hat{\phi}(\gamma)Q\frac{f(\gamma)}{Z_{f}}q(Q)$$ $$=\bigg{(}\sum_{\gamma}\hat{\phi}(\gamma)\frac{f(\gamma)}{Z_{f}}\bigg{)}\bigg{(}\sum_{Q}Qq(Q)\bigg{)}$$ $$=\mathbb{E}_{\pi}[\hat{\phi}(\gamma)]\mathbb{E}_{Q}[Q]$$ $$=\frac{S}{P}\mathbb{E}_{\pi}[\hat{\phi}(\gamma)].$$
$$(102)$$
$$(103)$$
$$(104)$$

$$\min\{\mathbb{E}_{\pi}[U],\mathbb{E}_{\pi}[V]\}=\mathbb{E}_{\pi}[V]\min\left\{1,\frac{\mathbb{E}_{\pi}[U]}{\mathbb{E}_{\pi}[V]}\right\}$$ $$=\mathbb{E}_{\pi}[V]\min\left\{1,\texttt{PIP}(i)\right\}$$ $$=\mathbb{E}_{\pi}[V]\texttt{PIP}(i)$$ $$=\frac{S}{P}\mathbb{E}_{\pi}[\hat{\phi}(\gamma)]\texttt{PIP}(i).$$
$$(107)$$
$$(108)$$
$$(109)$$

In addition, we have Hence, we obtain

$$(110)$$

From (90), (101), and (110), we have

$$\mathbb{E}\left[\left|\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},\mathcal{D})-\mathbb{P}\mathbb{P}(i)\right|^{2}\right]\leq\frac{4\varepsilon_{0}^{2}}{(1-\varepsilon_{0})^{2}}\mathbb{P}\mathbb{P}^{2}(i)+4\frac{d\nu}{d\pi}\frac{1}{T},$$

, (111)
and

$$\varepsilon_{0}=\frac{P}{\text{PIP}(i)\mathbb{E}_{\pi}[\hat{\phi}(\gamma)]S}\sqrt{\frac{64e\log T}{(1-\lambda_{\gamma,Q})T}}.\tag{1}$$

Now, observe that

$$\frac{d\nu}{d\pi}(\gamma,Q)=\frac{p_{\gamma_{1},Q_{1}}(\gamma,Q)}{\pi(\gamma,Q)}$$ $$\leq\frac{1}{\pi(\gamma,Q)}$$ $$=\frac{1}{\pi(\gamma)q(Q)}$$ $$\leq\frac{P}{S}\frac{1}{\min_{\gamma}\pi(\gamma)}.$$
$$(111)$$
$$(112)$$

$$(117)$$

By combining (111) and (116), we have

$$\mathbb{E}\left[\left|\sum_{t=1}^{T}\rho^{(t)}p(\gamma_{i}^{(t)}=1|\gamma_{-i}^{(t)},\mathcal{D})-\mathsf{P I P}(i)\right|^{2}\right]\leq\frac{4\varepsilon_{0}^{2}}{(1-\varepsilon_{0})^{2}}\mathsf{P I P}^{2}(i)+\frac{4P}{S}\frac{1}{\operatorname*{min}_{\gamma}\pi(\gamma)T}.$$

. (117)

## E Derive P(Γi|D, Γ−I)

Observe that

$$p(\gamma_{i}|{\mathcal{D}},\gamma_{-i})=\frac{p(\gamma_{i}|{\mathcal{D}},\gamma_{-i})}{p(1-\gamma_{i}|{\mathcal{D}},\gamma_{-i})}\bigg(1+\frac{p(\gamma_{i}|{\mathcal{D}},\gamma_{-i})}{p(1-\gamma_{i}|{\mathcal{D}},\gamma_{-i})}\bigg)^{-1}.$$

In addition, we have

p(γi = 1|D, γ−i) p(γi = 0|D, γ−i) = p(γi = 1, D|γ−i) p(γi = 0, D|γ−i)(119) = p(γi = 1|γ−i, X) p(γi = 0|γ−i, X) p(Y |γi = 1, γ−i, X) p(Y |γi = 0, γ−i, X)(120) = p(γi = 1) p(γi = 0)p(Y |γi = 1, γ−i, X) p(Y |γi = 0, γ−i, X) (121) = h 1 − h p(Y |γi = 1, γ−i, X) p(Y |γi = 0, γ−i, X) . (122)
On the other hand, for any tuple γ = (γ1, γ2, · · · , γP ) such that γi = 1 (so |γ| ≥ 1), we have

$$p(Y|\gamma_{i}=1,\gamma_{-i},\beta_{\gamma},\sigma_{\gamma}^{2},X)=\frac{1}{\left(\sigma_{\gamma}\sqrt{2\pi}\right)^{N}}\exp\bigg{(}-\frac{\|Y-X_{\gamma}\beta_{\gamma}\|^{2}}{2\sigma_{\gamma}^{2}}\bigg{)}.\tag{123}$$
$$(118)$$

It follows that

p(Y |γi = 1, γ−i, X = Z βγ Z ∞ σ2γ=0 σγ √2πN exp − ∥Y − Xγβγ∥ 2 2σ 2 γ p(βγ|γi = 1, γ−i)p(σ 2 γ |γi = 1, γ−i)dβγdσ2 1 = Z ∞ σ2γ=0 InvGamma12 ν0, 1 2 ν0λ0  Z βγ σγ √2πN exp − ∥Y − Xγβγ∥ 2 2σ 2 γ 1  ×1 σγ √2πτ −1|γ| exp −∥βγ∥ 2 2σ 2 γ τ −1 dβγdσ2 γ . (125) Now, observe that
γ(124)
$$\quad(124)$$  $$\quad(125)$$  $$\quad(125)$$
$$\begin{array}{l}{(126)}\\ {(127)}\\ {(128)}\end{array}$$
$$(129)$$
$$\left(130\right)$$ $$\left(131\right)$$
$$\|Y-X_{\gamma}\beta_{\gamma}\|^{2}+\tau\|\beta_{\gamma}\|^{2}$$ $$\qquad=(Y-X_{\gamma}\beta_{\gamma})^{T}(Y-X_{\gamma}\beta_{\gamma})+\tau\beta_{\gamma}^{T}\beta_{\gamma}$$ $$\qquad=Y^{T}Y-2Y^{T}X_{\gamma}\beta_{\gamma}+\beta_{\gamma}^{T}X_{\gamma}^{T}X_{\gamma}\beta_{\gamma}+\tau\beta_{\gamma}^{T}\beta_{\gamma}$$ $$\qquad=Y^{T}Y-2Y^{T}X_{\gamma}\beta_{\gamma}+\beta_{\gamma}^{T}(X_{\gamma}^{T}X_{\gamma}+\tau I)\beta_{\gamma}.$$  In the above condition, the critical finite matrix $Y^{T}Y$ is $Y$-invariant.  
Now, consider the EVD (singular value decomposition) of the positive definite matrix XT
γ Xγ +τ I (note that τ > 0):

$$X_{\gamma}^{T}X_{\gamma}+\tau I=U^{T}\Lambda U$$
TΛU (129)
where Λ is the a diagonal matrix consisting of all positive eigenvalue of XT
γ Xγ + τ I. Let

$$\begin{array}{l}{{\tilde{\beta}_{\gamma}:=\sqrt{\Lambda}U\beta_{\gamma},}}\\ {{\tilde{Y}_{\gamma}:=\sqrt{\Lambda^{-1}}U X_{\gamma}^{T}Y.}}\end{array}$$
Then, we have
∥Y − Xγβγ∥ 2 + τ∥βγ∥ 2 = Y T Y − 2Y T Xγβγ + β T γ (XT γ Xγ + τ I)βγ (132) = Y T Y − 2Y T Xγ √ Λ−1U T β˜γ + β˜T γ β˜γ (133) = Y T Y − 2Y˜ T γ β˜γ + β˜T γ β˜γ (134) =∥Y ∥ 2 − ∥Y˜γ| 2+Y˜ T γ Y˜γ − 2Y˜ T γ β˜γ + β˜T γ β˜γ (135) =∥Y ∥ 2 − ∥Y˜γ| 2+ ∥Y˜γ − β˜γ∥ 2. (136)
Hence, we have

$$\begin{array}{l}{{d\beta_{\gamma}=\operatorname*{det}(U^{T}\Lambda^{-1/2})d\tilde{\beta}_{\gamma}}}\\ {{\qquad=\operatorname*{det}(X_{\gamma}^{T}X_{\gamma}+\tau I)^{-1/2}d\tilde{\beta}_{\gamma}.}}\end{array}$$

Hence, we have

σγ √2πN exp − ∥Y − Xγβγ∥ 2 2σ 2 γ σγ √2πτ −1|γ| exp −∥βγ∥ 2 2σ 2 γ τ −1 dβγ (139) 1 Z 1 βγ = Z β˜γ 1 σγ √2πN exp − ∥Y ∥ 2 − ∥Y˜γ| 2+ ∥Y˜γ − β˜γ∥ 2 2σ 2 γ  ×1 σγ √2πτ −1|γ| det(XT γ Xγ + τ I) −1/2dβ˜γ (140) =1 σγ √2πN τ |γ|/2exp − ∥Y ∥ 2 − ∥Y˜γ| 2 2σ 2 γ det(XT γ Xγ + τ I) −1/2. (141)
 $\left(132\right)$  $\left(133\right)$  $\left(134\right)$  $\left(135\right)$  $\left(136\right)$
$$(137)$$ $$(138)$$
$$\left({139}\right)$$  $$\left({140}\right)$$  $$\left({141}\right)$$  ... 
By combining (125) and (141), we obtain
p(Y |γi = 1, γ−i, X
=
Z
βγ
Z ∞
σ2γ=0
σγ
√2πN
exp −
∥Y − Xγβγ∥
2
2σ
2
γ
1
$$(142)$$
$$(143)$$
p(βγ|γi = 1, γ−i)p(σ
2
γ
|γi = 1, γ−i)dβγdσ2
γ(142)
=
Z ∞
σ2γ=0
InvGamma12
ν0,
1
2
ν0λ0
1
σγ
√2πN
τ
|γ|/2
× exp −
∥Y ∥
2 − ∥Y˜γ|
2
2σ
2
γ
det(XT
γ Xγ + τ I)
−1/2dσ2
γ(143)
= det(XT
γ Xγ + τ I)
−1/2τ
|γ|/2(2π)
−N/2
Z ∞
σ2γ=0
InvGamma12
ν0,
1
2
ν0λ0
(σ
2
γ
)
−N/2
× exp −
∥Y ∥
2 − ∥Y˜γ∥
2
2σ
2
γ
dσ2
γ(144)
= det(XT
γ Xγ + τ I)
−1/2τ
|γ|/2(2π)
−N/2
×
Z ∞
σ2γ=0
(1/2λ0ν0)
1/2ν0
Γ(1/2ν0)(1/σ2
γ
)
1/2ν0+1 exp − 1/2ν0λ0/σ2
γ
(σ
2
γ
)
−N/2
× exp −
∥Y ∥
2 − ∥Y˜γ∥
2
2σ
2
γ
dσ2
γ(145)
= det(XT
γ Xγ + τ I)
−1/2τ
|γ|/2(2π)
−N/2
(1/2λ0ν0)
1/2ν0
Γ(1/2ν0)
×
Z ∞
σ2γ=0
(1/σ2
γ
)
1/2ν0+1+N/2exp −
∥Y ∥
2 − ∥Y˜γ∥
2 + ν0λ0

2σ
2
γ
$$(144)$$
$$(145)$$
$$(146)$$
$$(147)$$
$$(148)$$
$$(149)$$ $$(150)$$
dσ2
γ(146)
= det(XT
γ Xγ + τ I)
−1/2τ
|γ|/2(2π)
−N/2
(1/2λ0ν0)
1/2ν0
Γ(1/2ν0)
× Γ
N + ν0
2
∥Y ∥
2 − ∥Y˜γ∥
2 + ν0λ0
2
−
N+ν0
2
. (147)
Let γ˜1 is given by γ−i with γi = 1, γ˜0 is given by γ−i with γi = 0. It follows that
$$\frac{p(Y|\gamma_{i}=1,\gamma_{-i},X)}{p(Y|\gamma_{i}=0,\gamma_{-i},X)}=\sqrt{\tau}\sqrt{\frac{\operatorname*{det}(X_{\gamma_{i}}^{2}X_{\gamma_{0}}+\tau I)}{\operatorname*{det}(X_{\gamma_{1}}^{2}X_{\gamma_{1}}+\tau I)}}\left(\frac{\|Y\|^{2}-\|\hat{Y}_{\gamma_{0}}\|^{2}+\nu_{0}\lambda_{0}}{\|Y\|^{2}-\|\hat{Y}_{\gamma_{1}}\|^{2}+\nu_{0}\lambda_{0}}\right)^{\frac{N+\nu_{0}}{2}}.$$
. (148)
$$\|\tilde{Y}_{\gamma}\|^{2}=\tilde{Y}_{\gamma}^{T}\tilde{Y}_{\gamma}$$ $$=Y^{T}X_{\gamma}(X_{\gamma}^{T}X_{\gamma}+\tau I)^{-1}X_{\gamma}^{T}Y.\tag{1}$$
γ Y. (150)
$$\frac{p(Y|\gamma_{i}=1,\gamma_{-i},X)}{p(Y|\gamma_{i}=0,\gamma_{-i},X)}=\sqrt{\frac{\operatorname*{det}(X_{\gamma_{0}}^{T}X\gamma_{0}+\tau I)}{\operatorname*{det}(X_{\gamma_{1}}^{T}X\gamma_{1}+\tau I)}\Big(\frac{S_{\gamma_{0}}}{S_{\gamma_{1}}}\Big)^{N+\nu_{0}}},$$
$$S_{\gamma}:=Y^{T}Y-Y^{T}X_{\gamma}(X_{\gamma}^{T}X_{\gamma}+\tau I)^{-1}X_{\gamma}^{T}Y+\nu_{0}\lambda_{0}.$$
γ Y + ν0λ0. (152)
$$p(\gamma_{i}|{\mathcal{D}},\gamma_{-i})={\frac{p(\gamma_{i}|{\mathcal{D}},\gamma_{-i})}{p(1-\gamma_{i}|{\mathcal{D}},\gamma_{-i})}}\bigg(1+{\frac{p(\gamma_{i}|{\mathcal{D}},\gamma_{-i})}{p(1-\gamma_{i}|{\mathcal{D}},\gamma_{-i})}}\bigg)^{-1}.$$
$$(151)$$
$$(152)$$
$$(153)$$
On the other hand, we have Hence, we finally have where Based on this, we can estimate Denote the set of included variables in γ˜0 as I = {j : ˜γ0,j = 1} . Define F =XT
γ˜0Xγ˜0 + τ I−1, ν = XT Y
and νγ˜0 = (νj )j∈I . Also define A = XT X and ai = (Aji)j∈I . Then, by using the same arguments as (Zanella
& Roberts, 2019, Appendix B1), we can show that

S(˜γ1) = S(˜γ0) − di ν T γ˜0 F ai − νi 2, (154)
where di = (Aii + τ − a T
i F ai)
−1. In addition, we can compute a T
i F ai by using the Cholesky decomposition of F = LLT and

$$a_{i}^{T}Fa_{i}=\|a_{i}^{T}L\|^{2}$$ $$=\sum_{j\in I}(BL)_{ij}^{2},\tag{1}$$
$$\left(155\right)$$ $$\left(156\right)$$
$$(157)$$
$$(158)$$

where B is the p × |γ| matrix made of the columns of A corresponding to variables included in γ.

In addition, we have

 $X^T_{\tilde{\tau}_1}X_{\tilde{\tau}_1}+\tau I=\begin{pmatrix}X^T_{\tilde{\tau}0}X_{\tilde{\tau}0}+\tau I&a_i\\ a^T_i&A_{ii}+\tau\end{pmatrix}$  for the last one is to find the natural numbers we want to use that. 
Hence, by using Schur's formula for the determinant of block matrix, we are easy to see that

 $ \frac{\det(X^T_{\bar{\gamma}_0}X_{\bar{\gamma}_0}+\tau I)}{\det(X^T_{\bar{\gamma}_1}X_{\bar{\gamma}_1}+\tau I)}=d_i.$  $ \tau$. 
$$(159)$$
$$(160)$$
 (161)  (162)  (163)  (164)  (165)  (166)  (166)  (167)  (168)
Using this algorithm, if pre-computing XT X is not possible, the computational complexity per conditional PIP is O(N|γ| 2 +|γ| 3 +P|γ| 2). Otherwise, if pre-computing XT X is possible, the computational complexity per conditional PIP is O(|γ| 3 + P|γ| 2).

## F Proof Of Lemma 9

From Lemma 8 and the fact that {γ
(t), Q(t)} forms a reversible Markov chain with transition kernel K((*γ, Q*) → (γ
′, Q′)) = K∗(γ → γ
′)q(Q′), we have

1 − λγ,Q
= inf
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
⟨g, g⟩π − ⟨K*g, g*⟩ (159)
= 1 − sup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
⟨K*g, g*⟩ (160)
= 1 − sup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,Q
Kg(γ, Q)g(γ, Q)π(*γ, Q*) (161)
= 1 − sup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,Q
X
γ′,Q′
K((*γ, Q*) → (γ
′, Q′))g(γ
′, Q′)g(γ, Q)π(*γ, Q*) (162)
= 1 −
S
Psup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,Q
X
γ′,Q′
K∗(γ → γ
′)q(Q
′)g(γ
′, Q′)g(γ, Q)π(*γ, Q*) (163)
= 1 −
S
Psup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,Q
X
γ′,Q′
K∗(γ → γ
′)
f(γ)
Zf
q(Q)g(γ
′, Q′)g(*γ, Q*)q(Q
′) (164)
= 1 −
S
Psup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,γ′
K∗(γ → γ
′)
f(γ)
Zf
X
Q,Q′
g(γ
′, Q′)g(*γ, Q*)q(Q)q(Q
′) (165)
= 1 −
S
Psup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,γ′
K∗(γ → γ
′)π(γ)
X
Q
g(*γ, Q*)q(Q)
X
Q′
π(γ
′, Q′)q(Q
′)
(166)
= 1 −
S
Psup
g(γ,Q):Eπ[g]=0,Eπ[g
2]=1
X
γ,γ′
K∗(γ → γ
′)π(γ)h(γ)h(γ
′) (167)
where

$$\pi(\gamma)=\frac{f(\gamma)}{Z_{f}},$$ $$Z_{f}=\sum_{\gamma}f(\gamma),$$ $$h(\gamma):=\sum_{Q}g(\gamma,Q)q(Q).$$
(168)  $\left(169\right)$  $\left(170\right)$  . 
Observe that

$$\mathbb{E}_{\pi}[h(\gamma)]=\sum_{\gamma}h(\gamma)\pi(\gamma)$$ $$=\sum_{\gamma}\sum_{Q}g(\gamma,Q)q(Q)\pi(\gamma)$$ $$=\sum_{\gamma,Q}g(\gamma,Q)\pi(\gamma,Q)$$ $$=\mathbb{E}_{\pi}[g(\gamma,Q)]$$ $$=0.$$
$$(171)$$
$$(172)$$
$$(173)$$

On the other hand, we also have where (177) follows from the convexity of the function x 2 on [0, ∞).

From (175), (180), and (167), we obtain

$$1-\lambda_{\gamma,Q}\geq1-\sup_{h(\gamma):\mathbb{E}_{\pi}[h]=0,\mathbb{E}_{\pi}[h^{2}]\leq1}\sum_{\gamma,\gamma^{\prime}}K^{*}(\gamma\to\gamma^{\prime})\pi(\gamma)h(\gamma)h(\gamma^{\prime}).\tag{181}$$

Now, note that Eπ[h] = 0 is equivalent to h ⊥π 1. Let |Ω| = 2P +1 := n and h1, h2, · · · , hn are eigenfunctions of K∗corresponding to the decreasing ordered eigenvalues λ1 ≥ λ2 *≥ · · · ≥* λn and are orthogonal since K∗is self-adjoint. Set h1 = 1. Since ∥h∥2,π = 1 and h ⊥π 1, we have h =Pn j=2 ajhj because it is perpendicular to h1 so it can be only represented by these eigenvectors. By taking l2-norm on both sizes we have Pn j=2 a 2 j ≤ 1 since the form like ⟨hi, hj ⟩π = 0 and ⟨hi, hi⟩ = ∥hi∥
2 2,π = 1. Thus,

$$\sup_{h:\mathbb{E}_{\tau}[h]=0,\mathbb{E}_{\tau}[h^{2}]\leq1}\sum_{\gamma,\gamma^{\prime}}K^{*}(\gamma\to\gamma^{\prime})\pi(\gamma)h(\gamma)h(\gamma^{\prime})\leq\max_{a_{2},a_{3},\cdots,a_{n},\sum_{j=2}^{n}a_{j}^{2}\leq1}\sum_{j=1}^{n}a_{j}^{2}\lambda_{j}$$ $$\leq\lambda_{2}\sum_{j=2}^{n}a_{j}^{2}$$ $$=\lambda_{2},$$
jλj (182)

$$\begin{array}{l}{(174)}\\ {(175)}\end{array}$$
$$\mathbb{E}_{\pi}\big{[}h^{2}(\gamma)\big{]}=\sum_{\gamma}\bigg{(}\sum_{Q}g(\gamma,Q)q(Q)\bigg{)}^{2}\pi(\gamma)$$ $$\leq\sum_{\gamma}\bigg{(}\sum_{Q}g(\gamma,Q)^{2}q(Q)\bigg{)}\pi(\gamma)$$ $$=\sum_{\gamma,Q}g(\gamma,Q)^{2}\pi(\gamma,Q)$$ $$=\mathbb{E}_{\pi}\big{[}g(\gamma,Q)^{2}\big{]}$$ $$=1,$$
$$(176)$$
$$(177)$$
$$(178)$$
$$\begin{array}{l}{(179)}\\ {(180)}\end{array}$$

where Pn j=2 a 2 j ≤ 1 and λj ∈ spec(P) such that λ2 ≥ λ3 *· · · ≥* λn. Hence, from (184), we obtain

$$1-\lambda_{\gamma,Q}\geq1-\frac{S}{P}\lambda_{2}\tag{185}$$ $$=\frac{S}{P}(1-\lambda_{P})+1-\frac{S}{P}$$ (186) $$\geq1-\frac{S}{P}.\tag{187}$$