File size: 1,885 Bytes
ef005cd 44d1bf3 ef005cd 44d1bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: apache-2.0
language:
- en
- de
- ru
- zh
tags:
- mt-evaluation
- WMT
- MQM
size_categories:
- 100K<n<1M
---
# Dataset Summary
This dataset contains all MQM human annotations from previous [WMT Metrics shared tasks](https://wmt-metrics-task.github.io/) and the MQM annotations from [Experts, Errors, and Context](https://aclanthology.org/2021.tacl-1.87/) in a form of error spans.
The data is organised into 8 columns:
- src: input text
- mt: translation
- ref: reference translation
- annotations: List of error spans (dictionaries with 'start', 'end', 'severity', 'text')
- lp: language pair
**Note that this is not an official release of the data** and the original data can be found [here](https://github.com/google/wmt-mqm-human-evaluation).
Also, while `en-ru` was annotated by Unbabel, `en-de` and `zh-en` was annotated by Google. This means that for en-de and zh-en you will only find minor and major errors while for en-ru you can find a few critical errors.
## Python usage:
```python
from datasets import load_dataset
dataset = load_dataset("RicardoRei/wmt-mqm-error-spans", split="train")
```
There is no standard train/test split for this dataset but you can easily split it according to year, language pair or domain. E.g. :
```python
# split by LP
data = dataset.filter(lambda example: example["lp"] == "en-de")
```
## Citation Information
If you use this data please cite the following works:
- [Experts, Errors, and Context: A Large-Scale Study of Human Evaluation for Machine Translation](https://aclanthology.org/2021.tacl-1.87/)
- [Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based Human Evaluations on TED and News Domain](https://aclanthology.org/2021.wmt-1.73/)
- [Results of WMT22 Metrics Shared Task: Stop Using BLEU – Neural Metrics Are Better and More Robust](https://aclanthology.org/2022.wmt-1.2/)
|