File size: 3,860 Bytes
d0464b9
 
 
 
9cdac54
d0464b9
 
 
9cdac54
d0464b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79929cb
d0464b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import csv
import datasets

_PROMPTS_URLS = {
    "dev": "data/audios_dev_metadata.csv",
}

_ARCHIVES = {
    "dev": "data/dev.tar",
}

_PATH_TO_CLIPS = {
    "dev": "dev",
}

class NurcSPDataset(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "audio_name": datasets.Value("string"),
                    "file_path": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "speech_genre": datasets.Value("string"),
                    "speech_style": datasets.Value("string"),
                    "variety": datasets.Value("string"),
                    "accent": datasets.Value("string"),
                    "sex": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "num_speakers": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        )

    def _split_generators(self, dl_manager):
        prompts_path = dl_manager.download(_PROMPTS_URLS)
        archive = dl_manager.download(_ARCHIVES)

        return [
            datasets.SplitGenerator(
                name = datasets.Split.VALIDATION,
                gen_kwargs = {
                    "prompts_path": prompts_path["dev"],
                    "path_to_clips": _PATH_TO_CLIPS["dev"],
                    "audio_files": dl_manager.iter_archive(archive["dev"]),
                }
            ),
        ]

    def _generate_examples(self, prompts_path, path_to_clips, audio_files):
        examples = {}
        with open(prompts_path, "r") as f:
            csv_reader = csv.DictReader(f)
            for row in csv_reader:
                audio_name = row['audio_name']
                file_path = row['file_path']
                text = row['text']
                start_time = row['start_time']
                end_time = row['end_time']
                duration = row['duration']
                quality = row['quality']
                speech_genre = row['speech_genre']
                speech_style = row['speech_style']
                variety = row['variety']
                accent = row['accent']
                sex = row['sex']
                age_range = row['age_range']
                num_speakers = row['num_speakers']
                speaker_id = row['speaker_id']
                examples[file_path] = {
                    "audio_name": audio_name,
                    "file_path": file_path,
                    "text": text,
                    "start_time": start_time,
                    "end_time": end_time,
                    "duration": duration,
                    "quality": quality,
                    "speech_genre": speech_genre,
                    "speech_style": speech_style,
                    "variety": variety,
                    "accent": accent,
                    "sex": sex,
                    "age_range": age_range,
                    "num_speakers": num_speakers,
                    "speaker_id": speaker_id,
                }
        inside_clips_dir = False
        id_ = 0
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[path], "audio": audio}
                    id_ += 1
            elif inside_clips_dir:
                break