File size: 4,468 Bytes
2071122 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# install huggingface_hub from the command line:
#
# pip install huggingface_hub
# pip install datasets
#
# Log into huggingface hub
#
# huggingface-cli login
#
# This will ask you for an access token
import datasets
##### rosetta_high_quality_models #######
dataset = datasets.load_dataset(
"parquet",
name = "rosetta_high_quality_models",
data_dir = "./intermediate",
data_files = {"train" : "rosetta_high_quality_models.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "rosetta_high_quality_models",
data_dir = "rosetta_high_quality_models/data")
##### rosetta_low_quality_models #######
dataset = datasets.load_dataset(
"parquet",
name = "rosetta_low_quality_models",
data_dir = "./intermediate",
data_files = {"train" : "rosetta_low_quality_models.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "rosetta_low_quality_models",
data_dir = "rosetta_low_quality_models/data")
##### dmpfold_high_quality_models #######
dataset = datasets.load_dataset(
"parquet",
name = "dmpfold_high_quality_models",
data_dir = "./intermediate",
data_files = {"train" : "dmpfold_high_quality_models.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "dmpfold_high_quality_models",
data_dir = "dmpfold_high_quality_models/data")
##### dmpfold_low_quality_models #######
dataset = datasets.load_dataset(
"parquet",
name = "dmpfold_low_quality_models",
data_dir = "./intermediate",
data_files = {"train" : "dmpfold_low_quality_models.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "dmpfold_low_quality_models",
data_dir = "dmpfold_low_quality_models/data")
##########################
## Function Predictions ##
##########################
#### rosetta_high_quality_function_predictions
dataset = datasets.load_dataset(
"parquet",
name = "rosetta_high_quality_function_predictions",
data_dir = "./intermediate",
data_files = {"train" : "rosetta_high_quality_function_predictions.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "rosetta_high_quality_function_predictions",
data_dir = "rosetta_high_quality_function_predictions/data")
#### rosetta_low_quality_function_predictions
dataset = datasets.load_dataset(
"parquet",
name = "rosetta_low_quality_function_predictions",
data_dir = "./intermediate",
data_files = {"train" : "rosetta_low_quality_function_predictions.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "rosetta_low_quality_function_predictions",
data_dir = "rosetta_low_quality_function_predictions/data")
#### dmpfold_high_quality_function_predictions
dataset = datasets.load_dataset(
"parquet",
name = "dmpfold_high_quality_function_predictions",
data_dir = "./intermediate",
data_files = {"train" : "dmpfold_high_quality_function_predictions.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "dmpfold_high_quality_function_predictions",
data_dir = "dmpfold_high_quality_function_predictions/data")
#### dmpfold_low_quality_function_predictions
dataset = datasets.load_dataset(
"parquet",
name = "dmpfold_low_quality_function_predictions",
data_dir = "./intermediate",
data_files = {"train" : "dmpfold_low_quality_function_predictions.parquet"},
cache_dir = "/scratch/maom_root/maom0/maom",
split = "train",
keep_in_memory = True)
dataset.push_to_hub(
repo_id = "RosettaCommons/MIP",
config_name = "dmpfold_low_quality_function_predictions",
data_dir = "dmpfold_low_quality_function_predictions/data")
|