File size: 4,468 Bytes
2071122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157



# install huggingface_hub from the command line:
#
#    pip install huggingface_hub
#    pip install datasets
#
# Log into huggingface hub
#  
#    huggingface-cli login
# 
# This will ask you for an access token


import datasets

##### rosetta_high_quality_models #######
dataset = datasets.load_dataset(
    "parquet",
    name = "rosetta_high_quality_models",
    data_dir = "./intermediate",
    data_files = {"train" : "rosetta_high_quality_models.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "rosetta_high_quality_models",
    data_dir = "rosetta_high_quality_models/data")



##### rosetta_low_quality_models #######
dataset = datasets.load_dataset(
    "parquet",
    name = "rosetta_low_quality_models",
    data_dir = "./intermediate",
    data_files = {"train" : "rosetta_low_quality_models.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "rosetta_low_quality_models",
    data_dir = "rosetta_low_quality_models/data")


##### dmpfold_high_quality_models #######
dataset = datasets.load_dataset(
    "parquet",
    name = "dmpfold_high_quality_models",
    data_dir = "./intermediate",
    data_files = {"train" : "dmpfold_high_quality_models.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "dmpfold_high_quality_models",
    data_dir = "dmpfold_high_quality_models/data")



##### dmpfold_low_quality_models #######
dataset = datasets.load_dataset(
    "parquet",
    name = "dmpfold_low_quality_models",
    data_dir = "./intermediate",
    data_files = {"train" : "dmpfold_low_quality_models.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "dmpfold_low_quality_models",
    data_dir = "dmpfold_low_quality_models/data")

##########################
## Function Predictions ##
##########################

#### rosetta_high_quality_function_predictions
dataset = datasets.load_dataset(
    "parquet",
    name = "rosetta_high_quality_function_predictions",
    data_dir = "./intermediate",
    data_files = {"train" : "rosetta_high_quality_function_predictions.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "rosetta_high_quality_function_predictions",
    data_dir = "rosetta_high_quality_function_predictions/data")

#### rosetta_low_quality_function_predictions
dataset = datasets.load_dataset(
    "parquet",
    name = "rosetta_low_quality_function_predictions",
    data_dir = "./intermediate",
    data_files = {"train" : "rosetta_low_quality_function_predictions.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "rosetta_low_quality_function_predictions",
    data_dir = "rosetta_low_quality_function_predictions/data")




#### dmpfold_high_quality_function_predictions
dataset = datasets.load_dataset(
    "parquet",
    name = "dmpfold_high_quality_function_predictions",
    data_dir = "./intermediate",
    data_files = {"train" : "dmpfold_high_quality_function_predictions.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "dmpfold_high_quality_function_predictions",
    data_dir = "dmpfold_high_quality_function_predictions/data")

#### dmpfold_low_quality_function_predictions
dataset = datasets.load_dataset(
    "parquet",
    name = "dmpfold_low_quality_function_predictions",
    data_dir = "./intermediate",
    data_files = {"train" : "dmpfold_low_quality_function_predictions.parquet"},
    cache_dir = "/scratch/maom_root/maom0/maom",
    split = "train",
    keep_in_memory = True)

dataset.push_to_hub(
    repo_id = "RosettaCommons/MIP",
    config_name = "dmpfold_low_quality_function_predictions",
    data_dir = "dmpfold_low_quality_function_predictions/data")