|
|
|
|
|
import datasets |
|
import pyarrow |
|
|
|
def test_local_hf_match(dataset_tag): |
|
print(f"For dataset : '{dataset_tag}' testing if local and remote ids match ...") |
|
ids_hf = datasets.load_dataset( |
|
path = "RosettaCommons/MIP", |
|
name = dataset_tag, |
|
data_dir = dataset_tag, |
|
cache_dir = "/scratch/maom_root/maom0/maom", |
|
keep_in_memory = True).data['train'].select(['id']).to_pandas() |
|
ids_local = pyarrow.parquet.read_table( |
|
source = f"intermediate/{dataset_tag}.parquet", |
|
columns = ["id"]).to_pandas() |
|
assert ids_local.equals(ids_hf) |
|
|
|
|
|
test_local_hf_match("rosetta_high_quality_models") |
|
test_local_hf_match("rosetta_low_quality_models") |
|
test_local_hf_match("dmpfold_high_quality_models") |
|
test_local_hf_match("dmpfold_low_quality_models") |
|
|
|
test_local_hf_match("rosetta_high_quality_function_predictions") |
|
test_local_hf_match("rosetta_low_quality_function_predictions") |
|
test_local_hf_match("dmpfold_high_quality_function_predictions") |
|
test_local_hf_match("dmpfold_low_quality_function_predictions") |
|
|
|
|
|
|
|
import pandas |
|
dataset_long = pyarrow.parquet.read_table( |
|
"intermediate/dmpfold_low_quality_function_predictions.parquet").to_pandas() |
|
|
|
dataset_wide = pandas.pivot( |
|
dataset_long[["id", "term_id", "Y_hat"]], |
|
columns = "term_id", |
|
index = "id", |
|
values = "Y_hat") |
|
|