#' Assemble a Rosetta models dataset #' #' @param data_path character directory .pdb.gz files are located #' @param output_path character output .parquet path #' #' Write output_path .parquet file with columns #' [] #' where [] are key-value entries following #' the TER line in each .pdb.gz file assemble_rosetta_models <- function( data_path, output_path) { cat( "data path: ", data_path, "\n", "output path: ", output_path, "\n", sep = "") file_index <- 1 models <- list.files( path = data_path, full.names = TRUE, pattern = "*.pdb.gz", recursive = TRUE) |> purrr::map_dfr(.f = function(path) { file_handle <- path |> file(open = "rb") |> gzcon() if( file_index %% 1000 == 0) { cat("Reading '", path, "' ", file_index, "\n", sep = "") } file_index <<- file_index + 1 lines <- file_handle |> readLines() file_handle |> close() ter_line_index <- which( lines |> stringr::str_detect("^TER"), arr.ind = TRUE) lines[(ter_line_index + 1) : (length(lines) - 1)] |> paste0(collapse = "\n") |> readr::read_delim( delim = " ", col_names = c("key", "value"), show_col_types = FALSE) |> dplyr::mutate( id = path |> basename() |> stringr::str_replace_all(".pdb.gz", ""), .before = 1) |> dplyr::mutate( pdb = lines[1:ter_line_index] |> paste0(collapse = "\n")) }) models <- arrow::arrow_table(models) models$pdb <- models$pdb$cast(arrow::string()) models |> arrow::write_parquet(output_path) } # call assemble_rosetta_models for the high_quality and low_quality datasets dataset_tag <- "rosetta_high_quality_models" assemble_rosetta_models( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) dataset_tag <- "rosetta_low_quality_models" assemble_rosetta_models( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) #' Assemble a DMP-Fold models dataset #' #' @param data_path character directory .pdb.gz files are located #' @param output_path character output .parquet path #' #' Write output_path .parquet file with columns #' #' #' Note that dmpfold doesn't write out score lines like Rosetta assemble_dmpfold_models <- function( data_path, output_path) { cat( "data path: ", data_path, "\n", "output path: ", output_path, "\n", sep = "") file_index <- 1 models <- list.files( path = data_path, full.names = TRUE, pattern = "*.pdb.gz", recursive = TRUE) |> purrr::map_dfr(.f = function(path) { file_handle <- path |> file(open = "rb") |> gzcon() if (file_index %% 1000 == 0) { cat("Reading '", path, "' ", file_index, "\n", sep = "") } file_index <<- file_index + 1 lines <- file_handle |> readLines() file_handle |> close() ter_line_index <- which( lines |> stringr::str_detect("^TER"), arr.ind = TRUE) data.frame( id = path |> basename() |> stringr::str_replace_all(".pdb.gz", ""), pdb = lines[1:ter_line_index] |> paste0(collapse = "\n")) }) models |> arrow::write_parquet(output_path) } # call assemble_rosetta_models for the high_quality and low_quality datasets dataset_tag <- "dmpfold_high_quality_models" assemble_dmpfold_models( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) dataset_tag <- "dmpfold_low_quality_models" assemble_dmpfold_models( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) #################################### ## ## ## Assemble Function Predictions ## ## ## #################################### #' Assemble DeepFRI Function Prediction dataset #' #' @param data_path character directory where *_pred_scores.json.gz files are located #' @param output_path character output .parquet path #' #' Write output_path .parquet file with columns #' #' #' : Structure identifier like `MIP_00004873` #' : term onlogy, one of [BP, CC, EC, or MF] #' : GO or EC term identifiers like `GO:0009225` #' is the description of the term assemble_DeepFRI_function_predictions <- function( data_path, output_path) { cat( "data path: ", data_path, "\n", "output path: ", output_path, "\n", sep = "") file_index <- 1 scores <- c("BP", "CC", "EC", "MF") |> purrr::map_dfr(.f = function(ontology) { cat("Reading predictions cores for ontology ", ontology, "\n", sep = "") list.files( path = data_path, full.names = TRUE, pattern = paste0("*_", ontology, "_pred_scores.json.gz"), recursive = TRUE) |> purrr::map_dfr(.f = function(path) { cat("Reading '", path, "' ", file_index, "\n", sep = "") file_index <<- file_index + 1 data <- jsonlite::fromJSON(txt = path) scores <- as.data.frame(data$Y_hat) names(scores) <- data$goterms scores <- scores |> dplyr::mutate( id = data$pdb_chains, .before = 1) |> tidyr::pivot_longer( cols = -"id", names_to = "term_id", values_to = "Y_hat") |> dplyr::left_join( data.frame( term_ontology = ontology, term_id = data$goterms, term_name = data$gonames), by = "term_id") |> dplyr::select( id, term_ontology, term_id, term_name, Y_hat) }) }) scores |> arrow::write_parquet(output_path) } # call assemble_rosetta_models for all the datasets dataset_tag <- "rosetta_high_quality_function_predictions" assemble_DeepFRI_function_predictions( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) dataset_tag <- "rosetta_low_quality_function_predictions" assemble_DeepFRI_function_predictions( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) dataset_tag <- "dmpfold_high_quality_function_predictions" assemble_DeepFRI_function_predictions( data_path = paste0( "data/mxoicrobiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet")) dataset_tag <- "dmpfold_low_quality_function_predictions" assemble_DeepFRI_function_predictions( data_path = paste0( "data/microbiome_immunity_project_dataset/dataset/", dataset_tag), output_path = paste0("intermediate/", dataset_tag, ".parquet"))