# consistency between models and function predictions source("product/MPI/src/summarize_map.R") check_function_prediction_pivot <- function(dataset_tag, verbose = FALSE) { if (verbose) { "Checking function prediction pivot for dataset ", dataset_tag, "\n", sep = "") } dataset_long <- arrow::read_parquet( paste0("intermediate/", dataset_tag, "_function_predictions.parquet")) dataset_wide <- dataset_long |> dplyr::select(-term_name) |> tidyr::pivot_wider( id_cols = id, names_from = term_id, values_from = Y_hat) sum(is.na(dataset_wide)) } check_function_prediction_pivot("rosetta_high_quality") check_function_prediction_pivot("rosetta_low_quality") check_function_prediction_pivot("dmpfold_high_quality") check_function_prediction_pivot("dmpfold_low_quality") check_id_consistency <- function(dataset_tag, verbose = FALSE) { if (verbose) { cat("Loading model ids...\n") } ids_model <- arrow::read_parquet( paste0("intermediate/", dataset_tag, "_models.parquet"), col_select = "id") if (verbose) { cat("Loading function prediction ids...\n") } ids_anno <- arrow::read_parquet( paste0("intermediate/", dataset_tag, "_function_predictions.parquet"), col_select = "id") |> dplyr::distinct(id) problems <- dplyr::full_join( ids_model |> dplyr::mutate(model_id = id), ids_anno |> dplyr::mutate(anno_id = id), by = "id") |> summarize_map( x_cols = model_id, y_cols = anno_id, verbose = verbose) problems } check_id_consistency("rosetta_high_quality") check_id_consistency("rosetta_low_quality") check_id_consistency("dmpfold_high_quality") check_id_consistency("dmpfold_low_quality")