update curation scripts
Browse files- src/02.2_assemble_K50_dG_dataset.R +13 -29
- src/02.2_check_assembled_datasets.R +44 -0
- src/03.1_upload_data.py +67 -26
- src/03.2_check_uploaded_data.py +42 -0
- src/summarize_map.R +346 -0
src/02.2_assemble_K50_dG_dataset.R
CHANGED
@@ -57,19 +57,25 @@ dataset1 |>
|
|
57 |
# G0: Good (wild-type ΔG values below 4.75 kcal mol^−1), 325,132 ΔG measurements at 17,093 sites in 365 domains
|
58 |
# G1: Good but WT outside dynamic range
|
59 |
|
60 |
-
|
61 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
62 |
show_col_types = FALSE)
|
63 |
# 776,298 rows
|
64 |
|
65 |
-
|
66 |
arrow::write_parquet(
|
67 |
-
"intermediate/
|
68 |
|
69 |
-
dataset3 <-
|
70 |
dplyr::filter(ddG_ML != "-")
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
dplyr::filter(!(mut_type |> stringr::str_detect("(ins|del|[:])")))
|
74 |
|
75 |
|
@@ -77,38 +83,16 @@ ThermoMPNN_splits |> dplyr::group_by(split_name) |>
|
|
77 |
dplyr::do({
|
78 |
split <- .
|
79 |
split_name <- split$split_name[1]
|
80 |
-
mutant_set <-
|
81 |
dplyr::filter(mut_type != "wt") |>
|
82 |
dplyr::semi_join(split, by = c("WT_name" = "id"))
|
83 |
cat("Writing out split ", split_name, ", nrow: ", nrow(mutant_set), "\n", sep = "")
|
84 |
|
85 |
arrow::write_parquet(
|
86 |
x = mutant_set,
|
87 |
-
sink = paste0("intermediate/
|
88 |
data.frame()
|
89 |
})
|
90 |
-
|
91 |
-
|
92 |
-
dataset3_single_mutant_train <- dataset3_single_mutant |>
|
93 |
-
dplyr::filter(mut_type != "wt") |>
|
94 |
-
dplyr::semi_join(
|
95 |
-
ThermoMPNN_splits |>
|
96 |
-
dplyr::filter(split_name == "train"),
|
97 |
-
by = c("WT_name" = "id"))
|
98 |
-
|
99 |
-
dataset3_single_mutant_val <- dataset3_single_mutant |>
|
100 |
-
dplyr::filter(mut_type != "wt") |>
|
101 |
-
dplyr::semi_join(
|
102 |
-
ThermoMPNN_splits |>
|
103 |
-
dplyr::filter(split_name == "val"),
|
104 |
-
by = c("WT_name" = "id"))
|
105 |
-
|
106 |
-
dataset3_single_mutant_test <- dataset3_single_mutant |>
|
107 |
-
dplyr::filter(mut_type != "wt") |>
|
108 |
-
dplyr::semi_join(
|
109 |
-
ThermoMPNN_splits |>
|
110 |
-
dplyr::filter(split_name == "test"),
|
111 |
-
by = c("WT_name" = "id"))
|
112 |
|
113 |
|
114 |
####
|
|
|
57 |
# G0: Good (wild-type ΔG values below 4.75 kcal mol^−1), 325,132 ΔG measurements at 17,093 sites in 365 domains
|
58 |
# G1: Good but WT outside dynamic range
|
59 |
|
60 |
+
dataset2 <- readr::read_csv(
|
61 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
62 |
show_col_types = FALSE)
|
63 |
# 776,298 rows
|
64 |
|
65 |
+
dataset2 |>
|
66 |
arrow::write_parquet(
|
67 |
+
"intermediate/dataset2.parquet")
|
68 |
|
69 |
+
dataset3 <- dataset2 |>
|
70 |
dplyr::filter(ddG_ML != "-")
|
71 |
|
72 |
+
dataset3 |>
|
73 |
+
arrow::write_parquet(
|
74 |
+
"intermediate/dataset3.parquet")
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
dataset3_single <- dataset3 |>
|
79 |
dplyr::filter(!(mut_type |> stringr::str_detect("(ins|del|[:])")))
|
80 |
|
81 |
|
|
|
83 |
dplyr::do({
|
84 |
split <- .
|
85 |
split_name <- split$split_name[1]
|
86 |
+
mutant_set <- dataset3_single |>
|
87 |
dplyr::filter(mut_type != "wt") |>
|
88 |
dplyr::semi_join(split, by = c("WT_name" = "id"))
|
89 |
cat("Writing out split ", split_name, ", nrow: ", nrow(mutant_set), "\n", sep = "")
|
90 |
|
91 |
arrow::write_parquet(
|
92 |
x = mutant_set,
|
93 |
+
sink = paste0("intermediate/dataset3_single_", split_name, ".parquet"))
|
94 |
data.frame()
|
95 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
####
|
src/02.2_check_assembled_datasets.R
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# consistency between models and function predictions
|
4 |
+
source("product/MPI/src/summarize_map.R")
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
check_id_consistency <- function(
|
9 |
+
dataset_tag,
|
10 |
+
split,
|
11 |
+
verbose = FALSE) {
|
12 |
+
|
13 |
+
if (verbose) {
|
14 |
+
cat("Loading model ids...\n")
|
15 |
+
}
|
16 |
+
ids <- arrow::read_parquet(
|
17 |
+
paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
|
18 |
+
col_select = "id")
|
19 |
+
|
20 |
+
if (verbose) {
|
21 |
+
cat("Loading function prediction ids...\n")
|
22 |
+
}
|
23 |
+
ids_anno <- arrow::read_parquet(
|
24 |
+
paste0("intermediate/", dataset_tag, "_function_predictions.parquet"),
|
25 |
+
col_select = "id") |>
|
26 |
+
dplyr::distinct(id)
|
27 |
+
|
28 |
+
problems <- dplyr::full_join(
|
29 |
+
ids_model |>
|
30 |
+
dplyr::mutate(model_id = id),
|
31 |
+
ids_anno |>
|
32 |
+
dplyr::mutate(anno_id = id),
|
33 |
+
by = "id") |>
|
34 |
+
summarize_map(
|
35 |
+
x_cols = model_id,
|
36 |
+
y_cols = anno_id,
|
37 |
+
verbose = verbose)
|
38 |
+
problems
|
39 |
+
}
|
40 |
+
|
41 |
+
check_id_consistency("rosetta_high_quality")
|
42 |
+
check_id_consistency("rosetta_low_quality")
|
43 |
+
check_id_consistency("dmpfold_high_quality")
|
44 |
+
check_id_consistency("dmpfold_low_quality")
|
src/03.1_upload_data.py
CHANGED
@@ -16,12 +16,6 @@
|
|
16 |
import datasets
|
17 |
|
18 |
|
19 |
-
# Dataset1
|
20 |
-
# Dataset2
|
21 |
-
# Dataset3
|
22 |
-
# Single Mutants
|
23 |
-
#
|
24 |
-
|
25 |
# dataset1
|
26 |
# dataset2
|
27 |
# dataset3
|
@@ -30,6 +24,53 @@ import datasets
|
|
30 |
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
##### dataset3_single #######
|
35 |
dataset = datasets.load_dataset(
|
@@ -37,9 +78,9 @@ dataset = datasets.load_dataset(
|
|
37 |
name = "dataset3_single",
|
38 |
data_dir = "./intermediate",
|
39 |
data_files = {
|
40 |
-
"train" : "
|
41 |
-
"val" : "
|
42 |
-
"test" : "
|
43 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
44 |
keep_in_memory = True)
|
45 |
|
@@ -49,31 +90,31 @@ dataset.push_to_hub(
|
|
49 |
data_dir = "dataset3_single/data")
|
50 |
|
51 |
|
52 |
-
#####
|
53 |
dataset = datasets.load_dataset(
|
54 |
"parquet",
|
55 |
name = "dataset3_single_CV",
|
56 |
data_dir = "./intermediate",
|
57 |
data_files = {
|
58 |
-
"train_0" : "
|
59 |
-
"train_1" : "
|
60 |
-
"train_2" : "
|
61 |
-
"train_3" : "
|
62 |
-
"train_4" : "
|
63 |
-
"val_0" : "
|
64 |
-
"val_1" : "
|
65 |
-
"val_2" : "
|
66 |
-
"val_3" : "
|
67 |
-
"val_4" : "
|
68 |
-
"test_0" : "
|
69 |
-
"test_1" : "
|
70 |
-
"test_2" : "
|
71 |
-
"test_3" : "
|
72 |
-
"test_4" : "
|
73 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
74 |
keep_in_memory = True)
|
75 |
|
76 |
dataset.push_to_hub(
|
77 |
repo_id = "MaomLab/MegaScale",
|
78 |
config_name = "dataset3_single_CV",
|
79 |
-
data_dir = "
|
|
|
16 |
import datasets
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# dataset1
|
20 |
# dataset2
|
21 |
# dataset3
|
|
|
24 |
|
25 |
|
26 |
|
27 |
+
##### dataset1 #######
|
28 |
+
dataset = datasets.load_dataset(
|
29 |
+
"parquet",
|
30 |
+
name = "dataset",
|
31 |
+
data_dir = "./intermediate",
|
32 |
+
data_files = {
|
33 |
+
"train" : "dataset1.parquet"},
|
34 |
+
cache_dir = "/scratch/maom_root/maom0/maom",
|
35 |
+
keep_in_memory = True)
|
36 |
+
|
37 |
+
dataset.push_to_hub(
|
38 |
+
repo_id = "maom/MegaScale",
|
39 |
+
config_name = "dataset1",
|
40 |
+
data_dir = "dataset1/data")
|
41 |
+
|
42 |
+
|
43 |
+
##### dataset2 #######
|
44 |
+
dataset = datasets.load_dataset(
|
45 |
+
"parquet",
|
46 |
+
name = "dataset",
|
47 |
+
data_dir = "./intermediate",
|
48 |
+
data_files = {
|
49 |
+
"train" : "dataset2.parquet"},
|
50 |
+
cache_dir = "/scratch/maom_root/maom0/maom",
|
51 |
+
keep_in_memory = True)
|
52 |
+
|
53 |
+
dataset.push_to_hub(
|
54 |
+
repo_id = "maom/MegaScale",
|
55 |
+
config_name = "dataset2",
|
56 |
+
data_dir = "dataset2/data")
|
57 |
+
|
58 |
+
|
59 |
+
##### dataset3 #######
|
60 |
+
dataset = datasets.load_dataset(
|
61 |
+
"parquet",
|
62 |
+
name = "dataset",
|
63 |
+
data_dir = "./intermediate",
|
64 |
+
data_files = {
|
65 |
+
"train" : "dataset3.parquet"},
|
66 |
+
cache_dir = "/scratch/maom_root/maom0/maom",
|
67 |
+
keep_in_memory = True)
|
68 |
+
|
69 |
+
dataset.push_to_hub(
|
70 |
+
repo_id = "maom/MegaScale",
|
71 |
+
config_name = "dataset3",
|
72 |
+
data_dir = "dataset3/data")
|
73 |
+
|
74 |
|
75 |
##### dataset3_single #######
|
76 |
dataset = datasets.load_dataset(
|
|
|
78 |
name = "dataset3_single",
|
79 |
data_dir = "./intermediate",
|
80 |
data_files = {
|
81 |
+
"train" : "dataset3_single_train.parquet",
|
82 |
+
"val" : "dataset3_single_val.parquet",
|
83 |
+
"test" : "dataset3_single_test.parquet"},
|
84 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
85 |
keep_in_memory = True)
|
86 |
|
|
|
90 |
data_dir = "dataset3_single/data")
|
91 |
|
92 |
|
93 |
+
##### dataset3_single_CV #######
|
94 |
dataset = datasets.load_dataset(
|
95 |
"parquet",
|
96 |
name = "dataset3_single_CV",
|
97 |
data_dir = "./intermediate",
|
98 |
data_files = {
|
99 |
+
"train_0" : "dataset3_single_CV_train_0.parquet",
|
100 |
+
"train_1" : "dataset3_single_CV_train_1.parquet",
|
101 |
+
"train_2" : "dataset3_single_CV_train_2.parquet",
|
102 |
+
"train_3" : "dataset3_single_CV_train_3.parquet",
|
103 |
+
"train_4" : "dataset3_single_CV_train_4.parquet",
|
104 |
+
"val_0" : "dataset3_single_CV_val_0.parquet",
|
105 |
+
"val_1" : "dataset3_single_CV_val_1.parquet",
|
106 |
+
"val_2" : "dataset3_single_CV_val_2.parquet",
|
107 |
+
"val_3" : "dataset3_single_CV_val_3.parquet",
|
108 |
+
"val_4" : "dataset3_single_CV_val_4.parquet",
|
109 |
+
"test_0" : "dataset3_single_CV_test_0.parquet",
|
110 |
+
"test_1" : "dataset3_single_CV_test_1.parquet",
|
111 |
+
"test_2" : "dataset3_single_CV_test_2.parquet",
|
112 |
+
"test_3" : "dataset3_single_CV_test_3.parquet",
|
113 |
+
"test_4" : "dataset3_single_CV_test_4.parquet"},
|
114 |
cache_dir = "/scratch/maom_root/maom0/maom",
|
115 |
keep_in_memory = True)
|
116 |
|
117 |
dataset.push_to_hub(
|
118 |
repo_id = "MaomLab/MegaScale",
|
119 |
config_name = "dataset3_single_CV",
|
120 |
+
data_dir = "datase3_single_CV/data")
|
src/03.2_check_uploaded_data.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pyarrow
|
5 |
+
|
6 |
+
def test_local_hf_match(
|
7 |
+
dataset_tag,
|
8 |
+
split):
|
9 |
+
print(f"For dataset '{dataset_tag}' and split '{split}' testing if local and remote ids match ...")
|
10 |
+
ids_hf = datasets.load_dataset(
|
11 |
+
path = "maom/MegaScale",
|
12 |
+
name = dataset_tag,
|
13 |
+
data_dir = dataset_tag,
|
14 |
+
cache_dir = "/scratch/maom_root/maom0/maom",
|
15 |
+
keep_in_memory = True).data[split].select(['id']).to_pandas()
|
16 |
+
ids_local = pyarrow.parquet.read_table(
|
17 |
+
source = f"intermediate/{dataset_tag}_{split}.parquet",
|
18 |
+
columns = ["id"]).to_pandas()
|
19 |
+
assert ids_local.equals(ids_hf)
|
20 |
+
|
21 |
+
|
22 |
+
test_local_hf_match("dataset3_single", "train")
|
23 |
+
test_local_hf_match("dataset3_single", "val")
|
24 |
+
test_local_hf_match("dataset3_single", "test")
|
25 |
+
|
26 |
+
test_local_hf_match("dataset3_single_CV", "train_0")
|
27 |
+
test_local_hf_match("dataset3_single_CV", "train_1")
|
28 |
+
test_local_hf_match("dataset3_single_CV", "train_2")
|
29 |
+
test_local_hf_match("dataset3_single_CV", "train_3")
|
30 |
+
test_local_hf_match("dataset3_single_CV", "train_4")
|
31 |
+
|
32 |
+
test_local_hf_match("dataset3_single_CV", "val_0")
|
33 |
+
test_local_hf_match("dataset3_single_CV", "val_1")
|
34 |
+
test_local_hf_match("dataset3_single_CV", "val_2")
|
35 |
+
test_local_hf_match("dataset3_single_CV", "val_3")
|
36 |
+
test_local_hf_match("dataset3_single_CV", "val_4")
|
37 |
+
|
38 |
+
test_local_hf_match("dataset3_single_CV", "test_0")
|
39 |
+
test_local_hf_match("dataset3_single_CV", "test_1")
|
40 |
+
test_local_hf_match("dataset3_single_CV", "test_2")
|
41 |
+
test_local_hf_match("dataset3_single_CV", "test_3")
|
42 |
+
test_local_hf_match("dataset3_single_CV", "test_4")
|
src/summarize_map.R
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#' Diagnostics for messy joins
|
3 |
+
#'
|
4 |
+
#' given a data frame with two ways to group rows,
|
5 |
+
#' summarize and give examples of situations where the mapping is not 1-1
|
6 |
+
#'
|
7 |
+
#' @param x_cols tidyselect specification of a set of columns defining objects
|
8 |
+
#' @param y_cols tidyselect specification of a set of columns defining objects
|
9 |
+
#'
|
10 |
+
#' data <- data.frame(
|
11 |
+
#' x=c(1,2,NA,3,4,5,6,6,6,7,7),
|
12 |
+
#' y=c("a",NA,"c","d","d","d","e","f","g","h","h"))
|
13 |
+
#'
|
14 |
+
#' data |> summarize_map(
|
15 |
+
#' x_cols = x),
|
16 |
+
#' y_cols = y))
|
17 |
+
#' X<-[x]:
|
18 |
+
#' |X|: 7 # number of groups
|
19 |
+
#' |is.na.X|: 1 # number of groups with NA in atleaset 1 col
|
20 |
+
#' range(|x|:X): 1, 3 # size range of groups
|
21 |
+
#' Y<-[y]:
|
22 |
+
#' |Y|: 7
|
23 |
+
#' |is.na.Y|: 1
|
24 |
+
#' range(|y|:Y): 1, 3
|
25 |
+
#' [X U Y]: # grouping by the union of xcols and ycols
|
26 |
+
#' |X U Y|: 8
|
27 |
+
#' |is.na.XUY|: 2
|
28 |
+
#' range(|z|:X U Y): 1, 2
|
29 |
+
#' [X @ Y]:
|
30 |
+
#' |X ~ Y|: 5
|
31 |
+
#' |X:X < Y|, |Y:Y < X|: 1, 1
|
32 |
+
#' |X:X > Y|, |Y:Y < X|: 3, 3
|
33 |
+
#' $is.na.X
|
34 |
+
#' x y
|
35 |
+
#' 1 NA c
|
36 |
+
#'
|
37 |
+
#' $is.na.Y
|
38 |
+
#' x y
|
39 |
+
#' 1 2 <NA>
|
40 |
+
#'
|
41 |
+
#' $dup.XUY
|
42 |
+
#' x y
|
43 |
+
#' 1 7 h
|
44 |
+
#' 2 7 h
|
45 |
+
#'
|
46 |
+
#' $dup.X
|
47 |
+
#' x y
|
48 |
+
#' 1 6 e
|
49 |
+
#' 2 6 f
|
50 |
+
#' 3 6 g
|
51 |
+
#'
|
52 |
+
#' $dup.Y
|
53 |
+
#' y x
|
54 |
+
#' 1 d 3
|
55 |
+
#' 2 d 4
|
56 |
+
#' 3 d 5
|
57 |
+
#' @export
|
58 |
+
summarize_map <- function(
|
59 |
+
data,
|
60 |
+
x_cols,
|
61 |
+
y_cols,
|
62 |
+
n_examples = 4,
|
63 |
+
verbose = FALSE) {
|
64 |
+
|
65 |
+
# convert column selections named vectors of column indices into data
|
66 |
+
x_cols <- tidyselect::eval_select(rlang::enquo(x_cols), data)
|
67 |
+
y_cols <- tidyselect::eval_select(rlang::enquo(y_cols), data)
|
68 |
+
xUy_cols <- union(x_cols, y_cols)
|
69 |
+
names(xUy_cols) <- names(data[xUy_cols])
|
70 |
+
|
71 |
+
if(verbose) {
|
72 |
+
cat("The following is a report of the relationship between two different ways of identifying instances\n")
|
73 |
+
}
|
74 |
+
|
75 |
+
# example rows
|
76 |
+
problems <- list()
|
77 |
+
|
78 |
+
count_xUy <- data |>
|
79 |
+
dplyr::count(dplyr::across(tidyselect::all_of(xUy_cols))) |>
|
80 |
+
dplyr::ungroup()
|
81 |
+
count_x <- count_xUy |>
|
82 |
+
dplyr::count(dplyr::across(tidyselect::all_of(names(x_cols))), name = "size") |>
|
83 |
+
dplyr::ungroup()
|
84 |
+
count_y <- count_xUy |>
|
85 |
+
dplyr::count(dplyr::across(tidyselect::all_of(names(y_cols))), name = "size") |>
|
86 |
+
dplyr::ungroup()
|
87 |
+
|
88 |
+
if (verbose) {
|
89 |
+
cat("\nProperties of X identifiers:\n")
|
90 |
+
}
|
91 |
+
cat("X<-[", paste(names(x_cols), collapse = ", "), "]:\n", sep = "")
|
92 |
+
cat(" |X|: ", count_x |> stats::na.omit(method = "r") |> nrow(), sep = "")
|
93 |
+
|
94 |
+
na_count <- data |>
|
95 |
+
dplyr::select(tidyselect::all_of(x_cols)) |>
|
96 |
+
stats::complete.cases() |>
|
97 |
+
magrittr::not() |>
|
98 |
+
sum()
|
99 |
+
cat(
|
100 |
+
ifelse(
|
101 |
+
na_count == 0,
|
102 |
+
"",
|
103 |
+
paste0(" (", na_count, " NA)")),
|
104 |
+
"\n", sep = "")
|
105 |
+
|
106 |
+
size_dist <- count_x |>
|
107 |
+
stats::na.omit(method = "r") |>
|
108 |
+
dplyr::count(size) |>
|
109 |
+
dplyr::ungroup()
|
110 |
+
if (nrow(size_dist) < 12) {
|
111 |
+
cat(" count*size: ",
|
112 |
+
paste(size_dist$n, size_dist$size, sep = "*", collapse = ", "),
|
113 |
+
"\n", sep = "")
|
114 |
+
} else {
|
115 |
+
top <- 1:6
|
116 |
+
bottom <- (nrow(size_dist) - 6+1):nrow(size_dist)
|
117 |
+
cat(" count*size: ",
|
118 |
+
paste(
|
119 |
+
size_dist$n[top],
|
120 |
+
size_dist$size[top], sep = "*", collapse = ", "),
|
121 |
+
", ... ",
|
122 |
+
paste(
|
123 |
+
size_dist$n[bottom],
|
124 |
+
size_dist$size[bottom], sep = "*", collapse = ", "),
|
125 |
+
"\n", sep="")
|
126 |
+
}
|
127 |
+
|
128 |
+
if (verbose) {
|
129 |
+
cat("\nProperties of the Y identifiers:\n")
|
130 |
+
}
|
131 |
+
cat("Y<-[", paste(names(y_cols), collapse = ", "), "]:\n", sep = "")
|
132 |
+
cat(" |Y|: ", count_y |> stats::na.omit(method = "r") |> nrow(), sep = "")
|
133 |
+
na_count <- data |>
|
134 |
+
dplyr:::select(tidyselect::all_of(y_cols)) |>
|
135 |
+
stats::complete.cases() |>
|
136 |
+
magrittr::not() |>
|
137 |
+
sum()
|
138 |
+
cat(ifelse(na_count == 0, "", paste0(" (", na_count, " NA)")), "\n", sep = "")
|
139 |
+
|
140 |
+
size_dist <- count_y |>
|
141 |
+
stats::na.omit(method = "r") |>
|
142 |
+
dplyr::count(size) |>
|
143 |
+
dplyr::ungroup()
|
144 |
+
if (nrow(size_dist) < 12) {
|
145 |
+
cat(" count*size: ",
|
146 |
+
paste(size_dist$n, size_dist$size, sep = "*", collapse = ", "),
|
147 |
+
"\n", sep = "")
|
148 |
+
} else {
|
149 |
+
top <- 1:6
|
150 |
+
bottom <- (nrow(size_dist) - 6+1):nrow(size_dist)
|
151 |
+
cat(" count*size: ",
|
152 |
+
paste(
|
153 |
+
size_dist$n[top],
|
154 |
+
size_dist$size[top], sep = "*", collapse = ", "),
|
155 |
+
", ... ",
|
156 |
+
paste(
|
157 |
+
size_dist$n[bottom],
|
158 |
+
size_dist$size[bottom], sep = "*", collapse = ", "),
|
159 |
+
"\n", sep="")
|
160 |
+
}
|
161 |
+
|
162 |
+
if (verbose) {
|
163 |
+
cat("\nProperties of the intersection of union of the X and Y identifiers:\n")
|
164 |
+
}
|
165 |
+
cat("[X U Y]:\n")
|
166 |
+
cat(" |X U Y|: ", count_xUy |> stats::na.omit(method = "r") |> nrow(), sep = "")
|
167 |
+
na_count <- data |>
|
168 |
+
dplyr:::select(!!!xUy_cols) |>
|
169 |
+
stats::complete.cases() |>
|
170 |
+
magrittr::not() |>
|
171 |
+
sum()
|
172 |
+
cat(ifelse(na_count == 0, "", paste0(" (", na_count, " NA)")), "\n", sep = "")
|
173 |
+
|
174 |
+
size_dist <- count_xUy |>
|
175 |
+
stats::na.omit(method = "r") |>
|
176 |
+
dplyr::rename(size = n) |>
|
177 |
+
dplyr::count(size) |>
|
178 |
+
dplyr::ungroup()
|
179 |
+
if (nrow(size_dist) < 12) {
|
180 |
+
cat(" count*size: ",
|
181 |
+
paste(size_dist$n, size_dist$size, sep = "*", collapse = ", "),
|
182 |
+
"\n", sep="")
|
183 |
+
} else {
|
184 |
+
top <- 1:6
|
185 |
+
bottom <- (nrow(size_dist) - 6+1):nrow(size_dist)
|
186 |
+
cat(" count*size: ",
|
187 |
+
paste(
|
188 |
+
size_dist$n[top],
|
189 |
+
size_dist$size[top], sep = "*", collapse = ", "),
|
190 |
+
", ... ",
|
191 |
+
paste(
|
192 |
+
size_dist$n[bottom],
|
193 |
+
size_dist$size[bottom], sep = "*", collapse = ", "),
|
194 |
+
"\n", sep = "")
|
195 |
+
}
|
196 |
+
|
197 |
+
|
198 |
+
count_xUy <- count_xUy |> stats::na.omit(method = "r")
|
199 |
+
|
200 |
+
if (verbose) {
|
201 |
+
cat("Properties of the intersection of the X and Y identifiers:\n")
|
202 |
+
}
|
203 |
+
cat("[X @ Y]:\n")
|
204 |
+
if (verbose) {
|
205 |
+
cat(" Number of X and Y identifiers that are 1 to 1:\n")
|
206 |
+
}
|
207 |
+
cat(" |X ~ Y|: ",
|
208 |
+
count_xUy |>
|
209 |
+
dplyr::semi_join(
|
210 |
+
count_x |> dplyr::filter(size == 1),
|
211 |
+
by = names(x_cols)) |>
|
212 |
+
dplyr::semi_join(
|
213 |
+
count_y |> dplyr::filter(size == 1),
|
214 |
+
by = names(y_cols)) |>
|
215 |
+
nrow(),
|
216 |
+
"\n", sep = "")
|
217 |
+
|
218 |
+
if (verbose) {
|
219 |
+
cat(" Number of X and Y identifiers where an X identifier maps to multiple Y identifiers:\n")
|
220 |
+
}
|
221 |
+
cat(
|
222 |
+
" |X:X < Y|, |Y:Y < X|: ",
|
223 |
+
count_xUy |>
|
224 |
+
dplyr::semi_join(
|
225 |
+
count_x |> dplyr::filter(size > 1),
|
226 |
+
by = names(x_cols)) |>
|
227 |
+
nrow(),
|
228 |
+
", ",
|
229 |
+
count_xUy |>
|
230 |
+
dplyr::count(
|
231 |
+
dplyr::across(tidyselect::all_of(names(x_cols))),
|
232 |
+
name = "size") |>
|
233 |
+
dplyr::filter(size > 1) |>
|
234 |
+
nrow(),
|
235 |
+
"\n", sep = "")
|
236 |
+
|
237 |
+
if (verbose) {
|
238 |
+
cat(
|
239 |
+
" Number of X and Y identifiers where a Y identifier maps to ",
|
240 |
+
"multiple X identifiers:\n")
|
241 |
+
}
|
242 |
+
cat(
|
243 |
+
" |X:X > Y|, |Y:Y > X|: ",
|
244 |
+
count_xUy |>
|
245 |
+
dplyr::semi_join(
|
246 |
+
count_y |>
|
247 |
+
dplyr::filter(size > 1),
|
248 |
+
by = names(y_cols)) |>
|
249 |
+
nrow(),
|
250 |
+
", ",
|
251 |
+
count_xUy |>
|
252 |
+
dplyr::count(
|
253 |
+
dplyr::across(tidyselect::all_of(names(y_cols))),
|
254 |
+
name = "size") |>
|
255 |
+
dplyr::filter(size > 1) |>
|
256 |
+
nrow(),
|
257 |
+
"\n", sep = "")
|
258 |
+
|
259 |
+
#is.na.X
|
260 |
+
ex_rows <- data |>
|
261 |
+
dplyr:::select(tidyselect::all_of(x_cols)) |>
|
262 |
+
stats::complete.cases() |>
|
263 |
+
magrittr::not() |>
|
264 |
+
which()
|
265 |
+
if (length(ex_rows)) {
|
266 |
+
if (!is.null(n_examples) && (n_examples < length(ex_rows))) {
|
267 |
+
ex_rows <- ex_rows |> sample(n_examples, replace = FALSE)
|
268 |
+
}
|
269 |
+
problems$is.na.X <- data |>
|
270 |
+
dplyr::slice(ex_rows) |>
|
271 |
+
dplyr::arrange(dplyr::across(tidyselect::all_of(names(x_cols))))
|
272 |
+
}
|
273 |
+
|
274 |
+
#is.na.Y
|
275 |
+
ex_rows <- data |>
|
276 |
+
dplyr:::select(tidyselect::all_of(y_cols)) |>
|
277 |
+
stats::complete.cases() |>
|
278 |
+
magrittr::not() |>
|
279 |
+
which()
|
280 |
+
if (length(ex_rows)) {
|
281 |
+
if (!is.null(n_examples) && (n_examples < length(ex_rows))) {
|
282 |
+
ex_rows <- ex_rows |> sample(n_examples, replace = FALSE)
|
283 |
+
}
|
284 |
+
problems$is.na.Y <- data |>
|
285 |
+
dplyr::slice(ex_rows) |>
|
286 |
+
dplyr::arrange(dplyr::across(tidyselect::all_of(names(y_cols))))
|
287 |
+
}
|
288 |
+
|
289 |
+
#dup.X
|
290 |
+
dup.X <- count_xUy |>
|
291 |
+
dplyr::filter(n == 1) |>
|
292 |
+
dplyr::count(
|
293 |
+
dplyr::across(tidyselect::all_of(names(x_cols))),
|
294 |
+
name = "size") |>
|
295 |
+
dplyr::filter(size > 1) |>
|
296 |
+
dplyr::ungroup() |>
|
297 |
+
dplyr:::select(-size)
|
298 |
+
if (nrow(dup.X) > 1) {
|
299 |
+
if (!is.null(n_examples) && (n_examples < nrow(dup.X))) {
|
300 |
+
dup.X <- dup.X |> dplyr::sample_n(n_examples, replace = FALSE)
|
301 |
+
}
|
302 |
+
problems$dup.X <- dup.X |>
|
303 |
+
dplyr::left_join(data, by = names(x_cols)) |>
|
304 |
+
dplyr::arrange(dplyr::across(tidyselect::all_of(names(x_cols))))
|
305 |
+
}
|
306 |
+
|
307 |
+
#dup.Y
|
308 |
+
dup.Y <- count_xUy |>
|
309 |
+
dplyr::filter(n == 1) |>
|
310 |
+
dplyr::count(
|
311 |
+
dplyr::across(tidyselect::all_of(names(y_cols))),
|
312 |
+
name = "size") |>
|
313 |
+
dplyr::filter(size > 1) |>
|
314 |
+
dplyr::ungroup() |>
|
315 |
+
dplyr:::select(-size)
|
316 |
+
if (nrow(dup.Y) > 1) {
|
317 |
+
if (!is.null(n_examples) && (n_examples < nrow(dup.Y))) {
|
318 |
+
dup.Y <- dup.Y |> dplyr::sample_n(n_examples, replace = FALSE)
|
319 |
+
}
|
320 |
+
problems$dup.Y <- dup.Y |>
|
321 |
+
dplyr::left_join(data, by = names(ycols)) |>
|
322 |
+
dplyr::arrange(dplyr::across(tidyselect::all_of(names(y_cols))))
|
323 |
+
}
|
324 |
+
|
325 |
+
#dup.XUY
|
326 |
+
dup.XUY <- count_xUy |>
|
327 |
+
dplyr::filter(n > 1) |>
|
328 |
+
dplyr:::select(-n)
|
329 |
+
if (nrow(dup.XUY) > 1) {
|
330 |
+
if (!is.null(n_examples) && (n_examples < nrow(dup.XUY))) {
|
331 |
+
dup.XUY <- dup.XUY |> dplyr::sample_n(n_examples, replace = FALSE)
|
332 |
+
}
|
333 |
+
problems$dup.XUY <- dup.XUY |>
|
334 |
+
dplyr::left_join(data, by = names(xUy_cols)) |>
|
335 |
+
dplyr::arrange(dplyr::across(tidyselect::all_of(names(xUy_cols))))
|
336 |
+
}
|
337 |
+
if (verbose) {
|
338 |
+
cat("Returned instances where:\n")
|
339 |
+
cat("\tis.na.X: The X identifier is NA\n")
|
340 |
+
cat("\tis.na.Y: The Y identifier is NA\n")
|
341 |
+
cat("\tdup.X: The X identifier is not unique\n")
|
342 |
+
cat("\tdup.Y: The Y identifier is not unique\n")
|
343 |
+
cat("\tdup.XUY: The X and Y identifiers together are not unique\n")
|
344 |
+
}
|
345 |
+
problems
|
346 |
+
}
|