maom commited on
Commit
b111af8
·
1 Parent(s): d3acbc0

update curation scripts

Browse files
src/02.2_assemble_K50_dG_dataset.R CHANGED
@@ -57,19 +57,25 @@ dataset1 |>
57
  # G0: Good (wild-type ΔG values below 4.75 kcal mol^−1), 325,132 ΔG measurements at 17,093 sites in 365 domains
58
  # G1: Good but WT outside dynamic range
59
 
60
- dataset23 <- readr::read_csv(
61
  file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
62
  show_col_types = FALSE)
63
  # 776,298 rows
64
 
65
- dataset23 |>
66
  arrow::write_parquet(
67
- "intermediate/dataset23.parquet")
68
 
69
- dataset3 <- dataset23 |>
70
  dplyr::filter(ddG_ML != "-")
71
 
72
- dataset3_single_mutant <- dataset3 |>
 
 
 
 
 
 
73
  dplyr::filter(!(mut_type |> stringr::str_detect("(ins|del|[:])")))
74
 
75
 
@@ -77,38 +83,16 @@ ThermoMPNN_splits |> dplyr::group_by(split_name) |>
77
  dplyr::do({
78
  split <- .
79
  split_name <- split$split_name[1]
80
- mutant_set <- dataset3_single_mutant |>
81
  dplyr::filter(mut_type != "wt") |>
82
  dplyr::semi_join(split, by = c("WT_name" = "id"))
83
  cat("Writing out split ", split_name, ", nrow: ", nrow(mutant_set), "\n", sep = "")
84
 
85
  arrow::write_parquet(
86
  x = mutant_set,
87
- sink = paste0("intermediate/dataset3_ThermoMPNN_", split_name, ".parquet"))
88
  data.frame()
89
  })
90
-
91
-
92
- dataset3_single_mutant_train <- dataset3_single_mutant |>
93
- dplyr::filter(mut_type != "wt") |>
94
- dplyr::semi_join(
95
- ThermoMPNN_splits |>
96
- dplyr::filter(split_name == "train"),
97
- by = c("WT_name" = "id"))
98
-
99
- dataset3_single_mutant_val <- dataset3_single_mutant |>
100
- dplyr::filter(mut_type != "wt") |>
101
- dplyr::semi_join(
102
- ThermoMPNN_splits |>
103
- dplyr::filter(split_name == "val"),
104
- by = c("WT_name" = "id"))
105
-
106
- dataset3_single_mutant_test <- dataset3_single_mutant |>
107
- dplyr::filter(mut_type != "wt") |>
108
- dplyr::semi_join(
109
- ThermoMPNN_splits |>
110
- dplyr::filter(split_name == "test"),
111
- by = c("WT_name" = "id"))
112
 
113
 
114
  ####
 
57
  # G0: Good (wild-type ΔG values below 4.75 kcal mol^−1), 325,132 ΔG measurements at 17,093 sites in 365 domains
58
  # G1: Good but WT outside dynamic range
59
 
60
+ dataset2 <- readr::read_csv(
61
  file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
62
  show_col_types = FALSE)
63
  # 776,298 rows
64
 
65
+ dataset2 |>
66
  arrow::write_parquet(
67
+ "intermediate/dataset2.parquet")
68
 
69
+ dataset3 <- dataset2 |>
70
  dplyr::filter(ddG_ML != "-")
71
 
72
+ dataset3 |>
73
+ arrow::write_parquet(
74
+ "intermediate/dataset3.parquet")
75
+
76
+
77
+
78
+ dataset3_single <- dataset3 |>
79
  dplyr::filter(!(mut_type |> stringr::str_detect("(ins|del|[:])")))
80
 
81
 
 
83
  dplyr::do({
84
  split <- .
85
  split_name <- split$split_name[1]
86
+ mutant_set <- dataset3_single |>
87
  dplyr::filter(mut_type != "wt") |>
88
  dplyr::semi_join(split, by = c("WT_name" = "id"))
89
  cat("Writing out split ", split_name, ", nrow: ", nrow(mutant_set), "\n", sep = "")
90
 
91
  arrow::write_parquet(
92
  x = mutant_set,
93
+ sink = paste0("intermediate/dataset3_single_", split_name, ".parquet"))
94
  data.frame()
95
  })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
 
98
  ####
src/02.2_check_assembled_datasets.R ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ # consistency between models and function predictions
4
+ source("product/MPI/src/summarize_map.R")
5
+
6
+
7
+
8
+ check_id_consistency <- function(
9
+ dataset_tag,
10
+ split,
11
+ verbose = FALSE) {
12
+
13
+ if (verbose) {
14
+ cat("Loading model ids...\n")
15
+ }
16
+ ids <- arrow::read_parquet(
17
+ paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
18
+ col_select = "id")
19
+
20
+ if (verbose) {
21
+ cat("Loading function prediction ids...\n")
22
+ }
23
+ ids_anno <- arrow::read_parquet(
24
+ paste0("intermediate/", dataset_tag, "_function_predictions.parquet"),
25
+ col_select = "id") |>
26
+ dplyr::distinct(id)
27
+
28
+ problems <- dplyr::full_join(
29
+ ids_model |>
30
+ dplyr::mutate(model_id = id),
31
+ ids_anno |>
32
+ dplyr::mutate(anno_id = id),
33
+ by = "id") |>
34
+ summarize_map(
35
+ x_cols = model_id,
36
+ y_cols = anno_id,
37
+ verbose = verbose)
38
+ problems
39
+ }
40
+
41
+ check_id_consistency("rosetta_high_quality")
42
+ check_id_consistency("rosetta_low_quality")
43
+ check_id_consistency("dmpfold_high_quality")
44
+ check_id_consistency("dmpfold_low_quality")
src/03.1_upload_data.py CHANGED
@@ -16,12 +16,6 @@
16
  import datasets
17
 
18
 
19
- # Dataset1
20
- # Dataset2
21
- # Dataset3
22
- # Single Mutants
23
- #
24
-
25
  # dataset1
26
  # dataset2
27
  # dataset3
@@ -30,6 +24,53 @@ import datasets
30
 
31
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ##### dataset3_single #######
35
  dataset = datasets.load_dataset(
@@ -37,9 +78,9 @@ dataset = datasets.load_dataset(
37
  name = "dataset3_single",
38
  data_dir = "./intermediate",
39
  data_files = {
40
- "train" : "dataset3_ThermoMPNN_train.parquet",
41
- "val" : "dataset3_ThermoMPNN_val.parquet",
42
- "test" : "dataset3_ThermoMPNN_test.parquet"},
43
  cache_dir = "/scratch/maom_root/maom0/maom",
44
  keep_in_memory = True)
45
 
@@ -49,31 +90,31 @@ dataset.push_to_hub(
49
  data_dir = "dataset3_single/data")
50
 
51
 
52
- ##### dataset3_single #######
53
  dataset = datasets.load_dataset(
54
  "parquet",
55
  name = "dataset3_single_CV",
56
  data_dir = "./intermediate",
57
  data_files = {
58
- "train_0" : "dataset3_ThermoMPNN_train_0.parquet",
59
- "train_1" : "dataset3_ThermoMPNN_train_1.parquet",
60
- "train_2" : "dataset3_ThermoMPNN_train_2.parquet",
61
- "train_3" : "dataset3_ThermoMPNN_train_3.parquet",
62
- "train_4" : "dataset3_ThermoMPNN_train_4.parquet",
63
- "val_0" : "dataset3_ThermoMPNN_val_0.parquet",
64
- "val_1" : "dataset3_ThermoMPNN_val_1.parquet",
65
- "val_2" : "dataset3_ThermoMPNN_val_2.parquet",
66
- "val_3" : "dataset3_ThermoMPNN_val_3.parquet",
67
- "val_4" : "dataset3_ThermoMPNN_val_4.parquet",
68
- "test_0" : "dataset3_ThermoMPNN_test_0.parquet",
69
- "test_1" : "dataset3_ThermoMPNN_test_1.parquet",
70
- "test_2" : "dataset3_ThermoMPNN_test_2.parquet",
71
- "test_3" : "dataset3_ThermoMPNN_test_3.parquet",
72
- "test_4" : "dataset3_ThermoMPNN_test_4.parquet"},
73
  cache_dir = "/scratch/maom_root/maom0/maom",
74
  keep_in_memory = True)
75
 
76
  dataset.push_to_hub(
77
  repo_id = "MaomLab/MegaScale",
78
  config_name = "dataset3_single_CV",
79
- data_dir = "datase3_single/data")
 
16
  import datasets
17
 
18
 
 
 
 
 
 
 
19
  # dataset1
20
  # dataset2
21
  # dataset3
 
24
 
25
 
26
 
27
+ ##### dataset1 #######
28
+ dataset = datasets.load_dataset(
29
+ "parquet",
30
+ name = "dataset",
31
+ data_dir = "./intermediate",
32
+ data_files = {
33
+ "train" : "dataset1.parquet"},
34
+ cache_dir = "/scratch/maom_root/maom0/maom",
35
+ keep_in_memory = True)
36
+
37
+ dataset.push_to_hub(
38
+ repo_id = "maom/MegaScale",
39
+ config_name = "dataset1",
40
+ data_dir = "dataset1/data")
41
+
42
+
43
+ ##### dataset2 #######
44
+ dataset = datasets.load_dataset(
45
+ "parquet",
46
+ name = "dataset",
47
+ data_dir = "./intermediate",
48
+ data_files = {
49
+ "train" : "dataset2.parquet"},
50
+ cache_dir = "/scratch/maom_root/maom0/maom",
51
+ keep_in_memory = True)
52
+
53
+ dataset.push_to_hub(
54
+ repo_id = "maom/MegaScale",
55
+ config_name = "dataset2",
56
+ data_dir = "dataset2/data")
57
+
58
+
59
+ ##### dataset3 #######
60
+ dataset = datasets.load_dataset(
61
+ "parquet",
62
+ name = "dataset",
63
+ data_dir = "./intermediate",
64
+ data_files = {
65
+ "train" : "dataset3.parquet"},
66
+ cache_dir = "/scratch/maom_root/maom0/maom",
67
+ keep_in_memory = True)
68
+
69
+ dataset.push_to_hub(
70
+ repo_id = "maom/MegaScale",
71
+ config_name = "dataset3",
72
+ data_dir = "dataset3/data")
73
+
74
 
75
  ##### dataset3_single #######
76
  dataset = datasets.load_dataset(
 
78
  name = "dataset3_single",
79
  data_dir = "./intermediate",
80
  data_files = {
81
+ "train" : "dataset3_single_train.parquet",
82
+ "val" : "dataset3_single_val.parquet",
83
+ "test" : "dataset3_single_test.parquet"},
84
  cache_dir = "/scratch/maom_root/maom0/maom",
85
  keep_in_memory = True)
86
 
 
90
  data_dir = "dataset3_single/data")
91
 
92
 
93
+ ##### dataset3_single_CV #######
94
  dataset = datasets.load_dataset(
95
  "parquet",
96
  name = "dataset3_single_CV",
97
  data_dir = "./intermediate",
98
  data_files = {
99
+ "train_0" : "dataset3_single_CV_train_0.parquet",
100
+ "train_1" : "dataset3_single_CV_train_1.parquet",
101
+ "train_2" : "dataset3_single_CV_train_2.parquet",
102
+ "train_3" : "dataset3_single_CV_train_3.parquet",
103
+ "train_4" : "dataset3_single_CV_train_4.parquet",
104
+ "val_0" : "dataset3_single_CV_val_0.parquet",
105
+ "val_1" : "dataset3_single_CV_val_1.parquet",
106
+ "val_2" : "dataset3_single_CV_val_2.parquet",
107
+ "val_3" : "dataset3_single_CV_val_3.parquet",
108
+ "val_4" : "dataset3_single_CV_val_4.parquet",
109
+ "test_0" : "dataset3_single_CV_test_0.parquet",
110
+ "test_1" : "dataset3_single_CV_test_1.parquet",
111
+ "test_2" : "dataset3_single_CV_test_2.parquet",
112
+ "test_3" : "dataset3_single_CV_test_3.parquet",
113
+ "test_4" : "dataset3_single_CV_test_4.parquet"},
114
  cache_dir = "/scratch/maom_root/maom0/maom",
115
  keep_in_memory = True)
116
 
117
  dataset.push_to_hub(
118
  repo_id = "MaomLab/MegaScale",
119
  config_name = "dataset3_single_CV",
120
+ data_dir = "datase3_single_CV/data")
src/03.2_check_uploaded_data.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import datasets
4
+ import pyarrow
5
+
6
+ def test_local_hf_match(
7
+ dataset_tag,
8
+ split):
9
+ print(f"For dataset '{dataset_tag}' and split '{split}' testing if local and remote ids match ...")
10
+ ids_hf = datasets.load_dataset(
11
+ path = "maom/MegaScale",
12
+ name = dataset_tag,
13
+ data_dir = dataset_tag,
14
+ cache_dir = "/scratch/maom_root/maom0/maom",
15
+ keep_in_memory = True).data[split].select(['id']).to_pandas()
16
+ ids_local = pyarrow.parquet.read_table(
17
+ source = f"intermediate/{dataset_tag}_{split}.parquet",
18
+ columns = ["id"]).to_pandas()
19
+ assert ids_local.equals(ids_hf)
20
+
21
+
22
+ test_local_hf_match("dataset3_single", "train")
23
+ test_local_hf_match("dataset3_single", "val")
24
+ test_local_hf_match("dataset3_single", "test")
25
+
26
+ test_local_hf_match("dataset3_single_CV", "train_0")
27
+ test_local_hf_match("dataset3_single_CV", "train_1")
28
+ test_local_hf_match("dataset3_single_CV", "train_2")
29
+ test_local_hf_match("dataset3_single_CV", "train_3")
30
+ test_local_hf_match("dataset3_single_CV", "train_4")
31
+
32
+ test_local_hf_match("dataset3_single_CV", "val_0")
33
+ test_local_hf_match("dataset3_single_CV", "val_1")
34
+ test_local_hf_match("dataset3_single_CV", "val_2")
35
+ test_local_hf_match("dataset3_single_CV", "val_3")
36
+ test_local_hf_match("dataset3_single_CV", "val_4")
37
+
38
+ test_local_hf_match("dataset3_single_CV", "test_0")
39
+ test_local_hf_match("dataset3_single_CV", "test_1")
40
+ test_local_hf_match("dataset3_single_CV", "test_2")
41
+ test_local_hf_match("dataset3_single_CV", "test_3")
42
+ test_local_hf_match("dataset3_single_CV", "test_4")
src/summarize_map.R ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #' Diagnostics for messy joins
3
+ #'
4
+ #' given a data frame with two ways to group rows,
5
+ #' summarize and give examples of situations where the mapping is not 1-1
6
+ #'
7
+ #' @param x_cols tidyselect specification of a set of columns defining objects
8
+ #' @param y_cols tidyselect specification of a set of columns defining objects
9
+ #'
10
+ #' data <- data.frame(
11
+ #' x=c(1,2,NA,3,4,5,6,6,6,7,7),
12
+ #' y=c("a",NA,"c","d","d","d","e","f","g","h","h"))
13
+ #'
14
+ #' data |> summarize_map(
15
+ #' x_cols = x),
16
+ #' y_cols = y))
17
+ #' X<-[x]:
18
+ #' |X|: 7 # number of groups
19
+ #' |is.na.X|: 1 # number of groups with NA in atleaset 1 col
20
+ #' range(|x|:X): 1, 3 # size range of groups
21
+ #' Y<-[y]:
22
+ #' |Y|: 7
23
+ #' |is.na.Y|: 1
24
+ #' range(|y|:Y): 1, 3
25
+ #' [X U Y]: # grouping by the union of xcols and ycols
26
+ #' |X U Y|: 8
27
+ #' |is.na.XUY|: 2
28
+ #' range(|z|:X U Y): 1, 2
29
+ #' [X @ Y]:
30
+ #' |X ~ Y|: 5
31
+ #' |X:X < Y|, |Y:Y < X|: 1, 1
32
+ #' |X:X > Y|, |Y:Y < X|: 3, 3
33
+ #' $is.na.X
34
+ #' x y
35
+ #' 1 NA c
36
+ #'
37
+ #' $is.na.Y
38
+ #' x y
39
+ #' 1 2 <NA>
40
+ #'
41
+ #' $dup.XUY
42
+ #' x y
43
+ #' 1 7 h
44
+ #' 2 7 h
45
+ #'
46
+ #' $dup.X
47
+ #' x y
48
+ #' 1 6 e
49
+ #' 2 6 f
50
+ #' 3 6 g
51
+ #'
52
+ #' $dup.Y
53
+ #' y x
54
+ #' 1 d 3
55
+ #' 2 d 4
56
+ #' 3 d 5
57
+ #' @export
58
+ summarize_map <- function(
59
+ data,
60
+ x_cols,
61
+ y_cols,
62
+ n_examples = 4,
63
+ verbose = FALSE) {
64
+
65
+ # convert column selections named vectors of column indices into data
66
+ x_cols <- tidyselect::eval_select(rlang::enquo(x_cols), data)
67
+ y_cols <- tidyselect::eval_select(rlang::enquo(y_cols), data)
68
+ xUy_cols <- union(x_cols, y_cols)
69
+ names(xUy_cols) <- names(data[xUy_cols])
70
+
71
+ if(verbose) {
72
+ cat("The following is a report of the relationship between two different ways of identifying instances\n")
73
+ }
74
+
75
+ # example rows
76
+ problems <- list()
77
+
78
+ count_xUy <- data |>
79
+ dplyr::count(dplyr::across(tidyselect::all_of(xUy_cols))) |>
80
+ dplyr::ungroup()
81
+ count_x <- count_xUy |>
82
+ dplyr::count(dplyr::across(tidyselect::all_of(names(x_cols))), name = "size") |>
83
+ dplyr::ungroup()
84
+ count_y <- count_xUy |>
85
+ dplyr::count(dplyr::across(tidyselect::all_of(names(y_cols))), name = "size") |>
86
+ dplyr::ungroup()
87
+
88
+ if (verbose) {
89
+ cat("\nProperties of X identifiers:\n")
90
+ }
91
+ cat("X<-[", paste(names(x_cols), collapse = ", "), "]:\n", sep = "")
92
+ cat(" |X|: ", count_x |> stats::na.omit(method = "r") |> nrow(), sep = "")
93
+
94
+ na_count <- data |>
95
+ dplyr::select(tidyselect::all_of(x_cols)) |>
96
+ stats::complete.cases() |>
97
+ magrittr::not() |>
98
+ sum()
99
+ cat(
100
+ ifelse(
101
+ na_count == 0,
102
+ "",
103
+ paste0(" (", na_count, " NA)")),
104
+ "\n", sep = "")
105
+
106
+ size_dist <- count_x |>
107
+ stats::na.omit(method = "r") |>
108
+ dplyr::count(size) |>
109
+ dplyr::ungroup()
110
+ if (nrow(size_dist) < 12) {
111
+ cat(" count*size: ",
112
+ paste(size_dist$n, size_dist$size, sep = "*", collapse = ", "),
113
+ "\n", sep = "")
114
+ } else {
115
+ top <- 1:6
116
+ bottom <- (nrow(size_dist) - 6+1):nrow(size_dist)
117
+ cat(" count*size: ",
118
+ paste(
119
+ size_dist$n[top],
120
+ size_dist$size[top], sep = "*", collapse = ", "),
121
+ ", ... ",
122
+ paste(
123
+ size_dist$n[bottom],
124
+ size_dist$size[bottom], sep = "*", collapse = ", "),
125
+ "\n", sep="")
126
+ }
127
+
128
+ if (verbose) {
129
+ cat("\nProperties of the Y identifiers:\n")
130
+ }
131
+ cat("Y<-[", paste(names(y_cols), collapse = ", "), "]:\n", sep = "")
132
+ cat(" |Y|: ", count_y |> stats::na.omit(method = "r") |> nrow(), sep = "")
133
+ na_count <- data |>
134
+ dplyr:::select(tidyselect::all_of(y_cols)) |>
135
+ stats::complete.cases() |>
136
+ magrittr::not() |>
137
+ sum()
138
+ cat(ifelse(na_count == 0, "", paste0(" (", na_count, " NA)")), "\n", sep = "")
139
+
140
+ size_dist <- count_y |>
141
+ stats::na.omit(method = "r") |>
142
+ dplyr::count(size) |>
143
+ dplyr::ungroup()
144
+ if (nrow(size_dist) < 12) {
145
+ cat(" count*size: ",
146
+ paste(size_dist$n, size_dist$size, sep = "*", collapse = ", "),
147
+ "\n", sep = "")
148
+ } else {
149
+ top <- 1:6
150
+ bottom <- (nrow(size_dist) - 6+1):nrow(size_dist)
151
+ cat(" count*size: ",
152
+ paste(
153
+ size_dist$n[top],
154
+ size_dist$size[top], sep = "*", collapse = ", "),
155
+ ", ... ",
156
+ paste(
157
+ size_dist$n[bottom],
158
+ size_dist$size[bottom], sep = "*", collapse = ", "),
159
+ "\n", sep="")
160
+ }
161
+
162
+ if (verbose) {
163
+ cat("\nProperties of the intersection of union of the X and Y identifiers:\n")
164
+ }
165
+ cat("[X U Y]:\n")
166
+ cat(" |X U Y|: ", count_xUy |> stats::na.omit(method = "r") |> nrow(), sep = "")
167
+ na_count <- data |>
168
+ dplyr:::select(!!!xUy_cols) |>
169
+ stats::complete.cases() |>
170
+ magrittr::not() |>
171
+ sum()
172
+ cat(ifelse(na_count == 0, "", paste0(" (", na_count, " NA)")), "\n", sep = "")
173
+
174
+ size_dist <- count_xUy |>
175
+ stats::na.omit(method = "r") |>
176
+ dplyr::rename(size = n) |>
177
+ dplyr::count(size) |>
178
+ dplyr::ungroup()
179
+ if (nrow(size_dist) < 12) {
180
+ cat(" count*size: ",
181
+ paste(size_dist$n, size_dist$size, sep = "*", collapse = ", "),
182
+ "\n", sep="")
183
+ } else {
184
+ top <- 1:6
185
+ bottom <- (nrow(size_dist) - 6+1):nrow(size_dist)
186
+ cat(" count*size: ",
187
+ paste(
188
+ size_dist$n[top],
189
+ size_dist$size[top], sep = "*", collapse = ", "),
190
+ ", ... ",
191
+ paste(
192
+ size_dist$n[bottom],
193
+ size_dist$size[bottom], sep = "*", collapse = ", "),
194
+ "\n", sep = "")
195
+ }
196
+
197
+
198
+ count_xUy <- count_xUy |> stats::na.omit(method = "r")
199
+
200
+ if (verbose) {
201
+ cat("Properties of the intersection of the X and Y identifiers:\n")
202
+ }
203
+ cat("[X @ Y]:\n")
204
+ if (verbose) {
205
+ cat(" Number of X and Y identifiers that are 1 to 1:\n")
206
+ }
207
+ cat(" |X ~ Y|: ",
208
+ count_xUy |>
209
+ dplyr::semi_join(
210
+ count_x |> dplyr::filter(size == 1),
211
+ by = names(x_cols)) |>
212
+ dplyr::semi_join(
213
+ count_y |> dplyr::filter(size == 1),
214
+ by = names(y_cols)) |>
215
+ nrow(),
216
+ "\n", sep = "")
217
+
218
+ if (verbose) {
219
+ cat(" Number of X and Y identifiers where an X identifier maps to multiple Y identifiers:\n")
220
+ }
221
+ cat(
222
+ " |X:X < Y|, |Y:Y < X|: ",
223
+ count_xUy |>
224
+ dplyr::semi_join(
225
+ count_x |> dplyr::filter(size > 1),
226
+ by = names(x_cols)) |>
227
+ nrow(),
228
+ ", ",
229
+ count_xUy |>
230
+ dplyr::count(
231
+ dplyr::across(tidyselect::all_of(names(x_cols))),
232
+ name = "size") |>
233
+ dplyr::filter(size > 1) |>
234
+ nrow(),
235
+ "\n", sep = "")
236
+
237
+ if (verbose) {
238
+ cat(
239
+ " Number of X and Y identifiers where a Y identifier maps to ",
240
+ "multiple X identifiers:\n")
241
+ }
242
+ cat(
243
+ " |X:X > Y|, |Y:Y > X|: ",
244
+ count_xUy |>
245
+ dplyr::semi_join(
246
+ count_y |>
247
+ dplyr::filter(size > 1),
248
+ by = names(y_cols)) |>
249
+ nrow(),
250
+ ", ",
251
+ count_xUy |>
252
+ dplyr::count(
253
+ dplyr::across(tidyselect::all_of(names(y_cols))),
254
+ name = "size") |>
255
+ dplyr::filter(size > 1) |>
256
+ nrow(),
257
+ "\n", sep = "")
258
+
259
+ #is.na.X
260
+ ex_rows <- data |>
261
+ dplyr:::select(tidyselect::all_of(x_cols)) |>
262
+ stats::complete.cases() |>
263
+ magrittr::not() |>
264
+ which()
265
+ if (length(ex_rows)) {
266
+ if (!is.null(n_examples) && (n_examples < length(ex_rows))) {
267
+ ex_rows <- ex_rows |> sample(n_examples, replace = FALSE)
268
+ }
269
+ problems$is.na.X <- data |>
270
+ dplyr::slice(ex_rows) |>
271
+ dplyr::arrange(dplyr::across(tidyselect::all_of(names(x_cols))))
272
+ }
273
+
274
+ #is.na.Y
275
+ ex_rows <- data |>
276
+ dplyr:::select(tidyselect::all_of(y_cols)) |>
277
+ stats::complete.cases() |>
278
+ magrittr::not() |>
279
+ which()
280
+ if (length(ex_rows)) {
281
+ if (!is.null(n_examples) && (n_examples < length(ex_rows))) {
282
+ ex_rows <- ex_rows |> sample(n_examples, replace = FALSE)
283
+ }
284
+ problems$is.na.Y <- data |>
285
+ dplyr::slice(ex_rows) |>
286
+ dplyr::arrange(dplyr::across(tidyselect::all_of(names(y_cols))))
287
+ }
288
+
289
+ #dup.X
290
+ dup.X <- count_xUy |>
291
+ dplyr::filter(n == 1) |>
292
+ dplyr::count(
293
+ dplyr::across(tidyselect::all_of(names(x_cols))),
294
+ name = "size") |>
295
+ dplyr::filter(size > 1) |>
296
+ dplyr::ungroup() |>
297
+ dplyr:::select(-size)
298
+ if (nrow(dup.X) > 1) {
299
+ if (!is.null(n_examples) && (n_examples < nrow(dup.X))) {
300
+ dup.X <- dup.X |> dplyr::sample_n(n_examples, replace = FALSE)
301
+ }
302
+ problems$dup.X <- dup.X |>
303
+ dplyr::left_join(data, by = names(x_cols)) |>
304
+ dplyr::arrange(dplyr::across(tidyselect::all_of(names(x_cols))))
305
+ }
306
+
307
+ #dup.Y
308
+ dup.Y <- count_xUy |>
309
+ dplyr::filter(n == 1) |>
310
+ dplyr::count(
311
+ dplyr::across(tidyselect::all_of(names(y_cols))),
312
+ name = "size") |>
313
+ dplyr::filter(size > 1) |>
314
+ dplyr::ungroup() |>
315
+ dplyr:::select(-size)
316
+ if (nrow(dup.Y) > 1) {
317
+ if (!is.null(n_examples) && (n_examples < nrow(dup.Y))) {
318
+ dup.Y <- dup.Y |> dplyr::sample_n(n_examples, replace = FALSE)
319
+ }
320
+ problems$dup.Y <- dup.Y |>
321
+ dplyr::left_join(data, by = names(ycols)) |>
322
+ dplyr::arrange(dplyr::across(tidyselect::all_of(names(y_cols))))
323
+ }
324
+
325
+ #dup.XUY
326
+ dup.XUY <- count_xUy |>
327
+ dplyr::filter(n > 1) |>
328
+ dplyr:::select(-n)
329
+ if (nrow(dup.XUY) > 1) {
330
+ if (!is.null(n_examples) && (n_examples < nrow(dup.XUY))) {
331
+ dup.XUY <- dup.XUY |> dplyr::sample_n(n_examples, replace = FALSE)
332
+ }
333
+ problems$dup.XUY <- dup.XUY |>
334
+ dplyr::left_join(data, by = names(xUy_cols)) |>
335
+ dplyr::arrange(dplyr::across(tidyselect::all_of(names(xUy_cols))))
336
+ }
337
+ if (verbose) {
338
+ cat("Returned instances where:\n")
339
+ cat("\tis.na.X: The X identifier is NA\n")
340
+ cat("\tis.na.Y: The Y identifier is NA\n")
341
+ cat("\tdup.X: The X identifier is not unique\n")
342
+ cat("\tdup.Y: The Y identifier is not unique\n")
343
+ cat("\tdup.XUY: The X and Y identifiers together are not unique\n")
344
+ }
345
+ problems
346
+ }