File size: 3,770 Bytes
723db72
 
1aa51c9
 
 
 
 
 
 
 
 
 
 
 
723db72
1aa51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45bf389
1aa51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db05b96
 
 
62b2553
 
db05b96
 
 
 
 
 
 
 
 
1aa51c9
 
 
 
 
db05b96
 
 
62b2553
db05b96
 
 
 
 
 
 
 
 
ac4cf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aa51c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
license: apache-2.0
language:
- en
tags:
- novel
- training
- story
task_categories:
- text-classification
- text-generation
pretty_name: Honeyfeed3600
size_categories:
- 1K<n<10K
---

# Dataset Card for Honeyfeed3600

*The BigKnow2022 dataset and its subsets are not yet complete. Not all information here may be accurate or accessible.*

## Dataset Description

- **Homepage:** (TODO)
- **Repository:** <https://github.com/RyokoAI/BigKnow2022>
- **Paper:** N/A 
- **Leaderboard:** N/A
- **Point of Contact:** Ronsor/undeleted <ronsor@ronsor.com>

### Dataset Summary

Honeyfeed3600 is a dataset consisting of text from over 38,000 chapters across approximately 3,600 series posted on the
English-language web novel site [Honeyfeed](https://www.honeyfeed.fm).

### Supported Tasks and Leaderboards

This dataset is primarily intended for unsupervised training of text generation models; however, it may be useful for other purposes.

* text-classification
* text-generation

### Languages

* English

## Dataset Structure

### Data Instances

```json
{
  "text": "Dark, black, nothingness. There are so many ways to describe that hole, but nothing would get me down there...","
  "meta": {
    "subset": "honeyfeed",
    "themes": [],
    "my_themes": [],
    "prompt": "",
    "author": "Lucianael",
    "novel": "10009",
    "id": "55686",
    "title": "13 Steps - 13 Steps",
    "likes": 4,
    "views": 21,
    "q": 0.5999999999999999
  }
}
```

### Data Fields

* `text`: the actual chapter text
* `meta`: novel and chapter metadata
  * `subset`: dataset tag: `honeyfeed`
  * `lang`: dataset language: `en` (English)
  * `themes`: array of novel themes
  * `my_themes`: array of additional novel themes
  * `prompt`: writing prompt
  * `author`: author name
  * `novel`: novel ID
  * `id`: chapter ID
  * `title`: novel and chapter title in the form `<chapter title> - <novel title>`
  * `likes`: novel like count
  * `views`: novel view count
  * `q`: q-score (quality score)
 
#### Q-Score Distribution

```
0.00: 499
0.10: 420
0.20: 2562
0.30: 0
0.40: 0
0.50: 13344
0.60: 9021
0.70: 5997
0.80: 4217
0.90: 1931
1.00: 801
```

### Data Splits

No splitting of the data was performed.

## Dataset Creation

### Curation Rationale

TODO

### Source Data

#### Initial Data Collection and Normalization

TODO

#### Who are the source language producers?

The authors of each novel.

### Annotations

#### Annotation process

Chapter and novel titles were scraped alongside chapter text.

#### Who are the annotators?

No human annotators.

### Personal and Sensitive Information

The dataset contains only works of fiction, and we do not believe it contains any PII.

## Considerations for Using the Data

### Social Impact of Dataset

This dataset is intended to be useful for anyone who wishes to train a model to generate "more entertaining" content.
It may also be useful for other languages depending on your language model.

### Discussion of Biases

This dataset is composed of fictional works by various authors. Because of this fact, the contents of this dataset will reflect
the biases of those authors. Beware of stereotypes.

### Other Known Limitations

N/A

## Additional Information

### Dataset Curators

Ronsor Labs

### Licensing Information

Apache 2.0, for all parts of which Ronsor Labs or the Ryoko AI Production Committee may be considered authors. All other material is
distributed under fair use principles.

### Citation Information

```
@misc{ryokoai2023-bigknow2022,
  title         = {BigKnow2022: Bringing Language Models Up to Speed},
  author        = {Ronsor},
  year          = {2023},
  howpublished  = {\url{https://github.com/RyokoAI/BigKnow2022}},
}
```

### Contributions

Thanks to @ronsor (GH) for gathering this dataset.