Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
Design2Code-HARD / g13.html
RyanLi0802's picture
Upload 162 files
f4195e4 verified
<!DOCTYPE html>
<html lang="en">
<head>
<style>
/*
body {
font-family: -apple-system,BlinkMacSystemFont,"Segoe UI",Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji";
line-height: 1.5;
color: rgb(36, 41, 47);
font-size: 16px;
line-height: 24px;
}
h1, h2 {
font-weight: 600;
border-bottom-color: rgb(216, 222, 228);
border-bottom-style: solid;
border-bottom-width: 1px;
margin-top: 24px;
}
h1 {
font-size: 32px;
line-height: 40px;
padding-bottom: 9.6px;
}
h2 {
font-size: 24px;
line-height: 30px;
padding-bottom: 7.2px;
}
table {
border-collapse: collapse;
border-color: rgb(128, 128, 128);
}
table, tr {
border-top: 1px solid hsla(210,18%,87%,1);
}
tbody {
display: table-row-group;
vertical-align: middle;
border-color: inherit;
}
*/
body {
box-sizing: border-box;
min-width: 200px;
max-width: 1110px;
margin: 0 auto;
padding: 45px;
}
@media (prefers-color-scheme: dark) {
body {
background-color: #0d1117;
}
}
.github-fork-ribbon:before {
background-color: #121612;
}
.banner-image {
border-radius: 50px;
}
</style>
<!-- Google tag (gtag.js) -->
<meta charset="utf-8">
<title>
Animated AI
</title>
<meta content="width=device-width, initial-scale=1.0" name="viewport">
</head>
<body>
<article class="markdown-body">
<h1>
<div>
<img class="banner-image" src="rick.jpg" width="100%">
</div>
</h1>
<p>
I'm creating animations and instructional videos about neural networks.
Check out my
<a>
Patreon
</a>
and
<a>
YouTube channel
</a>
!
</p>
<h2>
Convolution
</h2>
<h3>
The Basic Algorithm
</h3>
Watch the companion YouTube video:
<a>
Fundamental Algorithm of Convolution in Neural Networks
</a>
.
<img alt="The process of convolution in neural networks with a 3x3 kernel size" height="auto" src="rick.jpg" width="960">
<h3>
Padding
</h3>
Companion video:
<a>
Convolution Padding - Neural Networks
</a>
<table>
<tbody>
<tr>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size" height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size and a padding of 'SAME', i.e., 1 pixel on the top, bottom, left, and right." height="auto" src="rick.jpg" width="480">
</td>
</tr>
<tr>
<td>
No Padding AKA "Valid"
</td>
<td>
[1,1,1,1] Padding AKA "Same"
</td>
</tr>
</tbody>
</table>
<h3>
Stride
</h3>
Companion video:
<a>
Stride - Convolution in Neural Networks
</a>
<table>
<thead>
<tr>
<th>
Stride 1
</th>
<th>
Stride 2
</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size" height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size and a stride of 2x2" height="auto" src="rick.jpg" width="480">
</td>
</tr>
<tr>
<td>
No Padding AKA "Valid"; Stride of 1
</td>
<td>
No Padding AKA "Valid"; Stride of 2
</td>
</tr>
<tr>
<td>
<img height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size, a stride of 2x2, and a padding of 'SAME', i.e., 1 pixel on the top, bottom, left, and right." height="auto" src="rick.jpg" width="480">
</td>
</tr>
</tbody>
</table>
<h3>
Groups, Depthwise, and Depthwise-Separable
</h3>
Watch the companion YouTube video:
<a>
Groups, Depthwise, and Depthwise-Separable Convolution (Neural Networks)
</a>
.
<table>
<tbody>
<tr>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size" height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size and 2 groups" height="auto" src="rick.jpg" width="480">
</td>
</tr>
<tr>
<td>
1 Group
</td>
<td>
2 Groups
</td>
</tr>
<tr>
<td>
<img alt="The process of convolution in neural networks with a 3x3 kernel size and 8 groups making it a depthwise convolution" height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="A depthwise convolution layer followed by a pointwise convolution layer making the combined process a depthwise-separable convolution" height="auto" src="rick.jpg" width="480">
</td>
</tr>
<tr>
<td>
Depthwise (8 Groups)
</td>
<td>
Depthwise-separable (8 Groups followed by pointwise)
</td>
</tr>
</tbody>
</table>
<h2 id="pixel-shuffle">
Pixel Shuffle
</h2>
Watch the companion YouTube video:
<a>
Pixel Shuffle - Changing Resolution with Style
</a>
<h3>
2x2 Block Size
</h3>
<table>
<tbody>
<tr>
<td>
<img alt="Pixel shuffle animation in neural networks with a block size of 2x2" height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="Pixel unshuffle animation in neural networks with a block size of 2x2" height="auto" src="rick.jpg" width="480">
</td>
</tr>
<tr>
<td>
2x2 Pixel Shuffle
</td>
<td>
2x2 Pixel Unshuffle
</td>
</tr>
<tr>
<td colspan="2">
<img alt="Pixel shuffle and unshuffle in neural networks with a block size of 2x2 looping animation" height="auto" src="rick.jpg" width="960">
</td>
</tr>
<tr>
<td colspan="2">
2x2 Pixel Shuffle/Unshuffle Loop
</td>
</tr>
</tbody>
</table>
<h3>
3x3 Block Size
</h3>
<table>
<tbody>
<tr>
<td>
<img alt="Pixel shuffle animation in neural networks with a block size of 3x3" height="auto" src="rick.jpg" width="480">
</td>
<td>
<img alt="Pixel unshuffle animation in neural networks with a block size of 3x3" height="auto" src="rick.jpg" width="480">
</td>
</tr>
<tr>
<td>
3x3 Pixel Shuffle
</td>
<td>
3x3 Pixel Unshuffle
</td>
</tr>
<tr>
<td colspan="2">
<img alt="Pixel shuffle and unshuffle in neural networks with a block size of 3x3 looping animation" height="auto" src="rick.jpg" width="960">
</td>
</tr>
<tr>
<td colspan="2">
3x3 Pixel Shuffle/Unshuffle Loop
</td>
</tr>
</tbody>
</table>
<h2>
</h2>
<p>
Licensed under the
<a>
MIT License
</a>
</p>
</article>
</body>
</html>