Datasets:
holylovenia
commited on
Commit
•
b9d7059
1
Parent(s):
2069d69
Upload asr_smaldusc.py with huggingface_hub
Browse files- asr_smaldusc.py +182 -0
asr_smaldusc.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict, List, Tuple
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
from seacrowd.utils import schemas
|
24 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
25 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
26 |
+
|
27 |
+
# no bibtex citation
|
28 |
+
_CITATION = ""
|
29 |
+
_DATASETNAME = "asr_smaldusc"
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
This open-source dataset consists of 4.8 hours of transcribed Malay scripted
|
32 |
+
speech focusing on daily use sentences, where 2,839 utterances contributed by
|
33 |
+
ten speakers were contained.
|
34 |
+
"""
|
35 |
+
|
36 |
+
_HOMEPAGE = "https://magichub.com/datasets/malay-scripted-speech-corpus-daily-use-sentence/"
|
37 |
+
_LANGUAGES = ["zlm"]
|
38 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
|
39 |
+
_LOCAL = False
|
40 |
+
_URLS = {
|
41 |
+
_DATASETNAME: "https://magichub.com/df/df.php?file_name=Malay_Scripted_Speech_Corpus_Daily_Use_Sentence.zip",
|
42 |
+
}
|
43 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH, Tasks.SPEECH_RECOGNITION]
|
44 |
+
|
45 |
+
_SOURCE_VERSION = "1.0.0"
|
46 |
+
_SEACROWD_VERSION = "2024.06.20"
|
47 |
+
|
48 |
+
|
49 |
+
class ASRSmaldusc(datasets.GeneratorBasedBuilder):
|
50 |
+
"""ASR-Smaldusc consists transcribed Malay scripted speech focusing on daily use sentences."""
|
51 |
+
|
52 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
53 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
54 |
+
|
55 |
+
SEACROWD_SCHEMA_NAME = "sptext"
|
56 |
+
|
57 |
+
BUILDER_CONFIGS = [
|
58 |
+
SEACrowdConfig(
|
59 |
+
name=f"{_DATASETNAME}_source",
|
60 |
+
version=SOURCE_VERSION,
|
61 |
+
description=f"{_DATASETNAME} source schema",
|
62 |
+
schema="source",
|
63 |
+
subset_id=_DATASETNAME,
|
64 |
+
),
|
65 |
+
SEACrowdConfig(
|
66 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
67 |
+
version=SEACROWD_VERSION,
|
68 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
69 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
70 |
+
subset_id=_DATASETNAME,
|
71 |
+
),
|
72 |
+
]
|
73 |
+
|
74 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
75 |
+
|
76 |
+
def _info(self) -> datasets.DatasetInfo:
|
77 |
+
|
78 |
+
if self.config.schema == "source":
|
79 |
+
features = datasets.Features(
|
80 |
+
{
|
81 |
+
"id": datasets.Value("string"),
|
82 |
+
"channel": datasets.Value("string"),
|
83 |
+
"uttrans_id": datasets.Value("string"),
|
84 |
+
"speaker_id": datasets.Value("string"),
|
85 |
+
"prompt": datasets.Value("string"),
|
86 |
+
"transcription": datasets.Value("string"),
|
87 |
+
"path": datasets.Value("string"),
|
88 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
89 |
+
"speaker_gender": datasets.Value("string"),
|
90 |
+
"speaker_age": datasets.Value("int64"),
|
91 |
+
"speaker_region": datasets.Value("string"),
|
92 |
+
"speaker_device": datasets.Value("string"),
|
93 |
+
}
|
94 |
+
)
|
95 |
+
|
96 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
97 |
+
features = schemas.speech_text_features
|
98 |
+
|
99 |
+
return datasets.DatasetInfo(
|
100 |
+
description=_DESCRIPTION,
|
101 |
+
features=features,
|
102 |
+
homepage=_HOMEPAGE,
|
103 |
+
license=_LICENSE,
|
104 |
+
citation=_CITATION,
|
105 |
+
)
|
106 |
+
|
107 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
108 |
+
"""Returns SplitGenerators."""
|
109 |
+
|
110 |
+
data_paths = {
|
111 |
+
_DATASETNAME: Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])),
|
112 |
+
}
|
113 |
+
|
114 |
+
return [
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TRAIN,
|
117 |
+
gen_kwargs={
|
118 |
+
"filepath": data_paths[_DATASETNAME],
|
119 |
+
"split": "train",
|
120 |
+
},
|
121 |
+
)
|
122 |
+
]
|
123 |
+
|
124 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
125 |
+
"""Yields examples as (key, example) tuples."""
|
126 |
+
|
127 |
+
# read UTTRANSINFO file
|
128 |
+
# columns: channel, uttrans_id, speaker_id, prompt, transcription
|
129 |
+
uttransinfo_filepath = os.path.join(filepath, "UTTRANSINFO.txt")
|
130 |
+
with open(uttransinfo_filepath, "r", encoding="utf-8") as uttransinfo_file:
|
131 |
+
uttransinfo_data = uttransinfo_file.readlines()
|
132 |
+
uttransinfo_data = uttransinfo_data[1:] # remove header
|
133 |
+
uttransinfo_data = [s.strip("\n").split("\t") for s in uttransinfo_data]
|
134 |
+
|
135 |
+
# read SPKINFO file
|
136 |
+
# columns: channel, speaker_id, gender, age, region, device
|
137 |
+
spkinfo_filepath = os.path.join(filepath, "SPKINFO.txt")
|
138 |
+
with open(spkinfo_filepath, "r", encoding="utf-8") as spkinfo_file:
|
139 |
+
spkinfo_data = spkinfo_file.readlines()
|
140 |
+
spkinfo_data = spkinfo_data[1:] # remove header
|
141 |
+
spkinfo_data = [s.strip("\n").split("\t") for s in spkinfo_data]
|
142 |
+
for i, s in enumerate(spkinfo_data):
|
143 |
+
if s[2] == "M":
|
144 |
+
s[2] = "male"
|
145 |
+
elif s[2] == "F":
|
146 |
+
s[2] = "female"
|
147 |
+
else:
|
148 |
+
s[2] = None
|
149 |
+
# dictionary of metadata of each speaker
|
150 |
+
spkinfo_dict = {s[1]: {"speaker_gender": s[2], "speaker_age": int(s[3]), "speaker_region": s[4], "speaker_device": s[5]} for s in spkinfo_data}
|
151 |
+
|
152 |
+
num_sample = len(uttransinfo_data)
|
153 |
+
|
154 |
+
for i in range(num_sample):
|
155 |
+
wav_path = os.path.join(filepath, "WAV", uttransinfo_data[i][2], uttransinfo_data[i][1])
|
156 |
+
|
157 |
+
if self.config.schema == "source":
|
158 |
+
example = {
|
159 |
+
"id": str(i),
|
160 |
+
"channel": uttransinfo_data[i][0],
|
161 |
+
"uttrans_id": uttransinfo_data[i][1],
|
162 |
+
"speaker_id": uttransinfo_data[i][2],
|
163 |
+
"prompt": uttransinfo_data[i][3],
|
164 |
+
"transcription": uttransinfo_data[i][4],
|
165 |
+
"path": wav_path,
|
166 |
+
"audio": wav_path,
|
167 |
+
"speaker_gender": spkinfo_dict[uttransinfo_data[i][2]]["speaker_gender"],
|
168 |
+
"speaker_age": spkinfo_dict[uttransinfo_data[i][2]]["speaker_age"],
|
169 |
+
"speaker_region": spkinfo_dict[uttransinfo_data[i][2]]["speaker_region"],
|
170 |
+
"speaker_device": spkinfo_dict[uttransinfo_data[i][2]]["speaker_device"],
|
171 |
+
}
|
172 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
173 |
+
example = {
|
174 |
+
"id": str(i),
|
175 |
+
"speaker_id": uttransinfo_data[i][2],
|
176 |
+
"path": wav_path,
|
177 |
+
"audio": wav_path,
|
178 |
+
"text": uttransinfo_data[i][4],
|
179 |
+
"metadata": {"speaker_age": spkinfo_dict[uttransinfo_data[i][2]]["speaker_age"], "speaker_gender": spkinfo_dict[uttransinfo_data[i][2]]["speaker_gender"]},
|
180 |
+
}
|
181 |
+
|
182 |
+
yield i, example
|