holylovenia
commited on
Commit
•
58942cf
1
Parent(s):
872924f
Upload basaha_corpus.py with huggingface_hub
Browse files- basaha_corpus.py +186 -0
basaha_corpus.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{imperial-kochmar-2023-basahacorpus,
|
13 |
+
title = "{B}asaha{C}orpus: An Expanded Linguistic Resource for Readability Assessment in {C}entral {P}hilippine Languages",
|
14 |
+
author = "Imperial, Joseph Marvin and
|
15 |
+
Kochmar, Ekaterina",
|
16 |
+
editor = "Bouamor, Houda and
|
17 |
+
Pino, Juan and
|
18 |
+
Bali, Kalika",
|
19 |
+
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
|
20 |
+
month = dec,
|
21 |
+
year = "2023",
|
22 |
+
address = "Singapore",
|
23 |
+
publisher = "Association for Computational Linguistics",
|
24 |
+
url = "https://aclanthology.org/2023.emnlp-main.388",
|
25 |
+
doi = "10.18653/v1/2023.emnlp-main.388",
|
26 |
+
pages = "6302--6309",
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
_DATASETNAME = "basaha_corpus"
|
31 |
+
|
32 |
+
_DESCRIPTION = """
|
33 |
+
BasahaCorpus contains short stories in four Central Philippine languages \
|
34 |
+
(Minasbate, Rinconada, Kinaray-a, and Hiligaynon) for low-resource \
|
35 |
+
readability assessment. Each dataset per language contains stories \
|
36 |
+
distributed over the first three grade levels (L1, L2, and L3) in \
|
37 |
+
the Philippine education context. The grade levels of the dataset \
|
38 |
+
have been provided by an expert from Let's Read Asia.
|
39 |
+
"""
|
40 |
+
_HOMEPAGE = "https://github.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA"
|
41 |
+
|
42 |
+
_LANGUAGES = [
|
43 |
+
"msb",
|
44 |
+
"rin",
|
45 |
+
"kar",
|
46 |
+
"hil",
|
47 |
+
] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
48 |
+
|
49 |
+
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
|
50 |
+
|
51 |
+
_LOCAL = False
|
52 |
+
|
53 |
+
_URLS = {
|
54 |
+
# Minasbate, Rinconada, Kinaray-a, and Hiligaynon (from the _DESCRIPTION)
|
55 |
+
"msb": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/min_features.csv",
|
56 |
+
"rin": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/rin_features.csv",
|
57 |
+
"kar": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/kar_features.csv",
|
58 |
+
"hil": "https://raw.githubusercontent.com/imperialite/BasahaCorpus-HierarchicalCrosslingualARA/main/data/features/hil_features.csv",
|
59 |
+
}
|
60 |
+
|
61 |
+
_SUPPORTED_TASKS = [Tasks.READABILITY_ASSESSMENT]
|
62 |
+
|
63 |
+
_SOURCE_VERSION = "1.0.0"
|
64 |
+
|
65 |
+
_SEACROWD_VERSION = "2024.06.20"
|
66 |
+
|
67 |
+
|
68 |
+
class BasahaCorpusDataset(datasets.GeneratorBasedBuilder):
|
69 |
+
"""
|
70 |
+
BasahaCorpus comprises short stories in four Central Philippine
|
71 |
+
languages (Minasbate, Rinconada, Kinaray-a, and Hiligaynon)
|
72 |
+
for low-resource readability assessment. Each language dataset
|
73 |
+
includes stories from the first three grade levels (L1, L2, and L3)
|
74 |
+
in the Philippine education context, as classified by an expert
|
75 |
+
from Let's Read Asia.
|
76 |
+
"""
|
77 |
+
|
78 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
79 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
80 |
+
|
81 |
+
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}_{lang}",) for lang in _LANGUAGES] + [
|
82 |
+
SEACrowdConfig(
|
83 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_text",
|
84 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
85 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
86 |
+
schema="seacrowd_text",
|
87 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
88 |
+
)
|
89 |
+
for lang in _LANGUAGES
|
90 |
+
]
|
91 |
+
|
92 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_msb_source"
|
93 |
+
|
94 |
+
def _info(self) -> datasets.DatasetInfo:
|
95 |
+
|
96 |
+
if self.config.schema == "source":
|
97 |
+
|
98 |
+
features = datasets.Features(
|
99 |
+
{
|
100 |
+
"book_title": datasets.Value("string"),
|
101 |
+
"word_count": datasets.Value("int64"),
|
102 |
+
"sentence_count": datasets.Value("int64"),
|
103 |
+
"phrase_count_per_sentence": datasets.Value("float64"),
|
104 |
+
"average_word_len": datasets.Value("float64"),
|
105 |
+
"average_sentence_len": datasets.Value("float64"),
|
106 |
+
"average_syllable_count": datasets.Value("float64"),
|
107 |
+
"polysyll_count": datasets.Value("int64"),
|
108 |
+
"consonant_cluster_density": datasets.Value("float64"),
|
109 |
+
"v_density": datasets.Value("float64"),
|
110 |
+
"cv_density": datasets.Value("float64"),
|
111 |
+
"vc_density": datasets.Value("float64"),
|
112 |
+
"cvc_density": datasets.Value("float64"),
|
113 |
+
"vcc_density": datasets.Value("float64"),
|
114 |
+
"cvcc_density": datasets.Value("float64"),
|
115 |
+
"ccvc_density": datasets.Value("float64"),
|
116 |
+
"ccv_density": datasets.Value("float64"),
|
117 |
+
"ccvcc_density": datasets.Value("float64"),
|
118 |
+
"ccvccc_density": datasets.Value("float64"),
|
119 |
+
"tag_bigram_sim": datasets.Value("float64"),
|
120 |
+
"bik_bigram_sim": datasets.Value("float64"),
|
121 |
+
"ceb_bigram_sim": datasets.Value("float64"),
|
122 |
+
"hil_bigram_sim": datasets.Value("float64"),
|
123 |
+
"rin_bigram_sim": datasets.Value("float64"),
|
124 |
+
"min_bigram_sim": datasets.Value("float64"),
|
125 |
+
"kar_bigram_sim": datasets.Value("float64"),
|
126 |
+
"tag_trigram_sim": datasets.Value("float64"),
|
127 |
+
"bik_trigram_sim": datasets.Value("float64"),
|
128 |
+
"ceb_trigam_sim": datasets.Value("float64"),
|
129 |
+
"hil_trigam_sim": datasets.Value("float64"),
|
130 |
+
"rin_trigam_sim": datasets.Value("float64"),
|
131 |
+
"min_trigam_sim": datasets.Value("float64"),
|
132 |
+
"kar_trigam_sim": datasets.Value("float64"),
|
133 |
+
"grade_level": datasets.Value("string"),
|
134 |
+
}
|
135 |
+
)
|
136 |
+
|
137 |
+
elif self.config.schema == "seacrowd_text":
|
138 |
+
features = schemas.text_features(["1", "2", "3"])
|
139 |
+
|
140 |
+
return datasets.DatasetInfo(
|
141 |
+
description=_DESCRIPTION,
|
142 |
+
features=features,
|
143 |
+
homepage=_HOMEPAGE,
|
144 |
+
license=_LICENSE,
|
145 |
+
citation=_CITATION,
|
146 |
+
)
|
147 |
+
|
148 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
149 |
+
"""Returns SplitGenerators."""
|
150 |
+
|
151 |
+
lang = self.config.name.split("_")[2]
|
152 |
+
|
153 |
+
if lang in _LANGUAGES:
|
154 |
+
data_path = Path(dl_manager.download_and_extract(_URLS[lang]))
|
155 |
+
else:
|
156 |
+
data_path = [Path(dl_manager.download_and_extract(_URLS[lang])) for lang in _LANGUAGES]
|
157 |
+
|
158 |
+
return [
|
159 |
+
datasets.SplitGenerator(
|
160 |
+
name=datasets.Split.TRAIN,
|
161 |
+
gen_kwargs={
|
162 |
+
"filepath": data_path,
|
163 |
+
"split": "train",
|
164 |
+
},
|
165 |
+
)
|
166 |
+
]
|
167 |
+
|
168 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
169 |
+
"""Yields examples as (key, example) tuples."""
|
170 |
+
|
171 |
+
df = pd.read_csv(filepath, index_col=None)
|
172 |
+
|
173 |
+
for index, row in df.iterrows():
|
174 |
+
|
175 |
+
if self.config.schema == "source":
|
176 |
+
example = row.to_dict()
|
177 |
+
|
178 |
+
elif self.config.schema == "seacrowd_text":
|
179 |
+
|
180 |
+
example = {
|
181 |
+
"id": str(index),
|
182 |
+
"text": str(row["book_title"]),
|
183 |
+
"label": str(row["grade_level"]),
|
184 |
+
}
|
185 |
+
|
186 |
+
yield index, example
|