holylovenia
commited on
Commit
•
b5cb176
1
Parent(s):
1291016
Upload bloom_lm.py with huggingface_hub
Browse files- bloom_lm.py +247 -0
bloom_lm.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SEA Crowd Data Loader for Bloom LM.
|
3 |
+
"""
|
4 |
+
from typing import Dict, Iterator, List, Tuple
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
from datasets.download.download_manager import DownloadManager
|
8 |
+
|
9 |
+
from seacrowd.utils import schemas
|
10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
11 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
12 |
+
|
13 |
+
_CITATION = r"""
|
14 |
+
@inproceedings{leong-etal-2022-bloom,
|
15 |
+
title = "Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks",
|
16 |
+
author = "Leong, Colin and
|
17 |
+
Nemecek, Joshua and
|
18 |
+
Mansdorfer, Jacob and
|
19 |
+
Filighera, Anna and
|
20 |
+
Owodunni, Abraham and
|
21 |
+
Whitenack, Daniel",
|
22 |
+
editor = "Goldberg, Yoav and
|
23 |
+
Kozareva, Zornitsa and
|
24 |
+
Zhang, Yue",
|
25 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
26 |
+
month = dec,
|
27 |
+
year = "2022",
|
28 |
+
address = "Abu Dhabi, United Arab Emirates",
|
29 |
+
publisher = "Association for Computational Linguistics",
|
30 |
+
url = "https://aclanthology.org/2022.emnlp-main.590",
|
31 |
+
doi = "10.18653/v1/2022.emnlp-main.590",
|
32 |
+
pages = "8608--8621",
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
logger = datasets.logging.get_logger(__name__)
|
37 |
+
|
38 |
+
# this config is created for SEACrowd Dataloader
|
39 |
+
_LANG_CONFIG = {
|
40 |
+
"abc": "Ambala Ayta",
|
41 |
+
"ahk": "Akha",
|
42 |
+
"bfn": "Bunak",
|
43 |
+
"bjn": "Banjar",
|
44 |
+
"bkx": "Baikeno",
|
45 |
+
"brb": "Brao",
|
46 |
+
"brv": "Western Bru",
|
47 |
+
"bya": "Batak",
|
48 |
+
"bzi": "Bisu",
|
49 |
+
"ceb": "Cebuano",
|
50 |
+
"cgc": "Kagayanen",
|
51 |
+
"cmo": "Central Mnong",
|
52 |
+
"ddg": "Fataluku",
|
53 |
+
"dmg": "Upper Kinabatangan",
|
54 |
+
"dnw": "Western Dani",
|
55 |
+
"dtp": "Kadazan Dusun",
|
56 |
+
"dtr": "Lotud",
|
57 |
+
"enc": "En",
|
58 |
+
"fil": "Filipino",
|
59 |
+
"gal": "Galolen",
|
60 |
+
"hil": "Hiligaynon",
|
61 |
+
"hre": "Hre",
|
62 |
+
"hro": "Haroi",
|
63 |
+
"idt": "Idaté",
|
64 |
+
"ilo": "Ilocano",
|
65 |
+
"ind": "Indonesian",
|
66 |
+
"jra": "Jarai",
|
67 |
+
"kak": "Kalanguya",
|
68 |
+
"khb": "Lü",
|
69 |
+
"khm": "Khmer",
|
70 |
+
"kqr": "Kimaragang",
|
71 |
+
"krr": "Krung",
|
72 |
+
"ksw": "S’gaw Karen",
|
73 |
+
"kvt": "Lahta",
|
74 |
+
"lao": "Lao",
|
75 |
+
"lhu": "Lahu",
|
76 |
+
"llg": "Lole",
|
77 |
+
"lsi": "Lacid",
|
78 |
+
"lwl": "Eastern Lawa",
|
79 |
+
"mdr": "Mandar",
|
80 |
+
"mgm": "Mambae",
|
81 |
+
"mhx": "Lhao Vo",
|
82 |
+
"mkz": "Makasae",
|
83 |
+
"mnw": "Mon",
|
84 |
+
"mqj": "Mamasa",
|
85 |
+
"mry": "Mandaya",
|
86 |
+
"msb": "Masbatenyo",
|
87 |
+
"mya": "Burmese",
|
88 |
+
"nod": "Northern Thai",
|
89 |
+
"nst": "Tangshang Naga",
|
90 |
+
"nxa": "Nauete",
|
91 |
+
"nxl": "South Nuaulu",
|
92 |
+
"pag": "Pangasinan",
|
93 |
+
"pce": "Ruching Palaung",
|
94 |
+
"pdu": "Kayan",
|
95 |
+
"pea": "Peranakan Indonesian",
|
96 |
+
"pmf": "Pamona",
|
97 |
+
"psp_ceb": "Filipino Sign Language",
|
98 |
+
"sea": "Semai",
|
99 |
+
"sgd": "Surigaonon",
|
100 |
+
"shn": "Shan",
|
101 |
+
"sml": "Central Sama",
|
102 |
+
"snl": "Sangil",
|
103 |
+
"tdt": "Tetun Dili",
|
104 |
+
"tet": "Tetun",
|
105 |
+
"tha": "Thai",
|
106 |
+
"tkd": "Tukudede",
|
107 |
+
"tnt": "Tontemboan",
|
108 |
+
"tom": "Tombulu",
|
109 |
+
"tpu": "Tampuan",
|
110 |
+
"vie": "Vietnamese",
|
111 |
+
"war": "Waray-Waray",
|
112 |
+
"wms": "Wambon",
|
113 |
+
"wnk": "Wanukaka",
|
114 |
+
"xmm": "Manado Malay",
|
115 |
+
"yet": "Yetfa",
|
116 |
+
"yin": "Riang Lai",
|
117 |
+
"zlm": "Malay",
|
118 |
+
}
|
119 |
+
|
120 |
+
_LOCAL = False
|
121 |
+
_LANGUAGES = list(_LANG_CONFIG.keys())
|
122 |
+
|
123 |
+
_DATASETNAME = "bloom_lm"
|
124 |
+
_DESCRIPTION = r"""
|
125 |
+
This is a Bloom Library dataset developed for the self-supervised language modeling task.
|
126 |
+
It covers 74 languages indigenous to SEA overall, amounting to total data of 21K.
|
127 |
+
This dataset belongs to a CC license, where its datapoints has specific license attached to it.
|
128 |
+
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/sil-ai/bloom-lm and use huggingface-cli login for authentication.
|
129 |
+
"""
|
130 |
+
|
131 |
+
_HOMEPAGE = "https://huggingface.co/datasets/sil-ai/bloom-lm"
|
132 |
+
_LICENSE = Licenses.CC.value
|
133 |
+
|
134 |
+
_URL = "https://huggingface.co/datasets/sil-ai/bloom-lm"
|
135 |
+
_HF_REMOTE_REF = "/".join(_URL.split("/")[-2:])
|
136 |
+
|
137 |
+
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
|
138 |
+
_SOURCE_VERSION = "0.1.0"
|
139 |
+
_SEACROWD_VERSION = "2024.06.20"
|
140 |
+
|
141 |
+
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
|
142 |
+
|
143 |
+
|
144 |
+
def construct_configs_on_langs() -> List[SEACrowdConfig]:
|
145 |
+
"""
|
146 |
+
The function `construct_configs` constructs a list of SEACrowdConfig objects based on `_LANGUAGES` var, and returns the list.
|
147 |
+
|
148 |
+
output:
|
149 |
+
a list of `SEACrowdConfig` objects based on instantiated init variables
|
150 |
+
"""
|
151 |
+
|
152 |
+
# set output var
|
153 |
+
config_list = []
|
154 |
+
|
155 |
+
# construct zipped arg for config instantiation
|
156 |
+
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK))
|
157 |
+
|
158 |
+
# implement source schema
|
159 |
+
version, config_name_prefix = _SOURCE_VERSION, "source"
|
160 |
+
config_list += [
|
161 |
+
SEACrowdConfig(
|
162 |
+
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}",
|
163 |
+
version=datasets.Version(version),
|
164 |
+
description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}",
|
165 |
+
schema=f"{config_name_prefix}",
|
166 |
+
# since the actual subset_id in source for "psp_ceb" is "psp", we are defining the subset_id as following for loading to source HF
|
167 |
+
subset_id=_LANG if _LANG != "psp_ceb" else "psp",
|
168 |
+
)
|
169 |
+
for _LANG in _LANGUAGES
|
170 |
+
]
|
171 |
+
|
172 |
+
# implement SEACrowd schema
|
173 |
+
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd"
|
174 |
+
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS:
|
175 |
+
config_list += [
|
176 |
+
SEACrowdConfig(
|
177 |
+
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}",
|
178 |
+
version=datasets.Version(version),
|
179 |
+
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}",
|
180 |
+
schema=f"{config_name_prefix}_{config_name_suffix}",
|
181 |
+
# since the actual subset_id in source for "psp_ceb" is "psp", we are defining the subset_id as following for loading to source HF
|
182 |
+
subset_id=_LANG if _LANG != "psp_ceb" else "psp",
|
183 |
+
)
|
184 |
+
for _LANG in _LANGUAGES
|
185 |
+
]
|
186 |
+
return config_list
|
187 |
+
|
188 |
+
|
189 |
+
class BloomLMDataset(datasets.GeneratorBasedBuilder):
|
190 |
+
"""Bloom LM dataset, subsetted from https://huggingface.co/datasets/sil-ai/bloom-lm"""
|
191 |
+
|
192 |
+
# get all schema w/o lang arg + get all schema w/ lang arg
|
193 |
+
BUILDER_CONFIGS = construct_configs_on_langs()
|
194 |
+
|
195 |
+
def _info(self) -> datasets.DatasetInfo:
|
196 |
+
_config_schema_name = self.config.schema
|
197 |
+
logger.info(f"Received schema name: {self.config.schema}")
|
198 |
+
# source schema
|
199 |
+
if _config_schema_name == "source":
|
200 |
+
features = datasets.Features(
|
201 |
+
{
|
202 |
+
"text": datasets.Value("string"),
|
203 |
+
"title": datasets.Value("string"),
|
204 |
+
"license": datasets.Value("string"),
|
205 |
+
"copyright": datasets.Value("string"),
|
206 |
+
"pageCount": datasets.Value("int32"),
|
207 |
+
"bookInstanceId": datasets.Value("string"),
|
208 |
+
"bookLineage": datasets.Value("string"),
|
209 |
+
}
|
210 |
+
)
|
211 |
+
|
212 |
+
# ssp schema
|
213 |
+
elif _config_schema_name == "seacrowd_ssp":
|
214 |
+
features = schemas.ssp_features
|
215 |
+
|
216 |
+
else:
|
217 |
+
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
|
218 |
+
|
219 |
+
return datasets.DatasetInfo(
|
220 |
+
description=_DESCRIPTION,
|
221 |
+
features=features,
|
222 |
+
homepage=_HOMEPAGE,
|
223 |
+
license=_LICENSE,
|
224 |
+
citation=_CITATION,
|
225 |
+
)
|
226 |
+
|
227 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
228 |
+
hf_dset_dict = datasets.load_dataset(_HF_REMOTE_REF, self.config.subset_id)
|
229 |
+
|
230 |
+
return [datasets.SplitGenerator(name=datasets.Split(dset_key), gen_kwargs={"hf_dset": dset}) for dset_key, dset in hf_dset_dict.items() if dset.num_rows > 0]
|
231 |
+
|
232 |
+
def _generate_examples(self, hf_dset) -> Iterator[Tuple[int, Dict]]:
|
233 |
+
_config_schema_name = self.config.schema
|
234 |
+
|
235 |
+
_idx = 0
|
236 |
+
for datapoints in hf_dset:
|
237 |
+
# the `_idx` will be generated manually since no `id` present in the dataset fulfill the purpose as primary key
|
238 |
+
if _config_schema_name == "source":
|
239 |
+
yield _idx, {colname: datapoints[colname] for colname in self.info.features}
|
240 |
+
|
241 |
+
elif _config_schema_name == "seacrowd_ssp":
|
242 |
+
yield _idx, {"id": _idx, "text": datapoints["text"]}
|
243 |
+
|
244 |
+
else:
|
245 |
+
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
|
246 |
+
|
247 |
+
_idx += 1
|