holylovenia
commited on
Commit
•
0c2122e
1
Parent(s):
cf0cfe6
Upload burmese_romanize.py with huggingface_hub
Browse files- burmese_romanize.py +123 -0
burmese_romanize.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Tasks, Licenses
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{chenchen2017statistical,
|
13 |
+
author = {Ding Chenchen and
|
14 |
+
Chea Vichet and
|
15 |
+
Pa Win Pa and
|
16 |
+
Utiyama Masao and
|
17 |
+
Sumita Eiichiro},
|
18 |
+
title = {Statistical Romanization for Abugida Scripts: Data and Experiment on Khmer and Burmese},
|
19 |
+
booktitle = {Proceedings of the 23rd Annual Conference of the Association for Natural Language Processing,
|
20 |
+
{NLP2017}, Tsukuba, Japan, 13-17 March 2017},
|
21 |
+
year = {2017},
|
22 |
+
url = {https://www.anlp.jp/proceedings/annual_meeting/2017/pdf_dir/P5-7.pdf},
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
_DATASETNAME = "burmese_romanize"
|
27 |
+
_DESCRIPTION = """\
|
28 |
+
This dataset consists of 2,335 Burmese names from real university students and faculty,
|
29 |
+
public figures, and minorities from Myanmar. Each entry includes the original name in
|
30 |
+
Burmese script, its corresponding Romanization, and the aligned Burmese and Latin
|
31 |
+
graphemes.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_HOMEPAGE = "http://www.nlpresearch-ucsy.edu.mm/NLP_UCSY/name-db.html"
|
35 |
+
_LANGUAGES = ["mya"]
|
36 |
+
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
|
37 |
+
_URLS = "http://www.nlpresearch-ucsy.edu.mm/NLP_UCSY/myanmaroma.zip"
|
38 |
+
|
39 |
+
_SUPPORTED_TASKS = [Tasks.TRANSLITERATION]
|
40 |
+
_SOURCE_VERSION = "1.0.0"
|
41 |
+
_SEACROWD_VERSION = "2024.06.20"
|
42 |
+
|
43 |
+
_LOCAL = False
|
44 |
+
|
45 |
+
|
46 |
+
class BurmeseRomanizeDataset(datasets.GeneratorBasedBuilder):
|
47 |
+
"""Romanization of names in Burmese script"""
|
48 |
+
|
49 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
50 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
51 |
+
|
52 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
53 |
+
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
SEACrowdConfig(
|
56 |
+
name=f"{_DATASETNAME}_source",
|
57 |
+
version=SOURCE_VERSION,
|
58 |
+
description=f"{_DATASETNAME} source schema",
|
59 |
+
schema="source",
|
60 |
+
subset_id=f"{_DATASETNAME}",
|
61 |
+
),
|
62 |
+
SEACrowdConfig(
|
63 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
64 |
+
version=SEACROWD_VERSION,
|
65 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
66 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
67 |
+
subset_id=f"{_DATASETNAME}",
|
68 |
+
),
|
69 |
+
]
|
70 |
+
|
71 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
72 |
+
|
73 |
+
def _info(self) -> datasets.DatasetInfo:
|
74 |
+
if self.config.schema == "source":
|
75 |
+
features = datasets.Features(
|
76 |
+
{
|
77 |
+
"original": datasets.Value("string"),
|
78 |
+
"romanized": datasets.Value("string"),
|
79 |
+
"aligned_graphemes": datasets.Sequence(datasets.Value("string")),
|
80 |
+
}
|
81 |
+
)
|
82 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
83 |
+
features = schemas.text2text_features
|
84 |
+
|
85 |
+
return datasets.DatasetInfo(
|
86 |
+
description=_DESCRIPTION,
|
87 |
+
features=features,
|
88 |
+
homepage=_HOMEPAGE,
|
89 |
+
license=_LICENSE,
|
90 |
+
citation=_CITATION,
|
91 |
+
)
|
92 |
+
|
93 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
94 |
+
data_dir = Path(dl_manager.download_and_extract(_URLS)) / "myanmaroma"
|
95 |
+
|
96 |
+
return [
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.TRAIN,
|
99 |
+
gen_kwargs={
|
100 |
+
"filepath": data_dir / "myanmaroma.txt",
|
101 |
+
"split": "train",
|
102 |
+
},
|
103 |
+
),
|
104 |
+
]
|
105 |
+
|
106 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
107 |
+
df = pd.read_csv(filepath, sep=" \|\|\| ", engine='python', header=None, names=["ori", "roman", "seg"])
|
108 |
+
if self.config.schema == "source":
|
109 |
+
for i, row in df.iterrows():
|
110 |
+
yield i, {
|
111 |
+
"original": row["ori"],
|
112 |
+
"romanized": row["roman"],
|
113 |
+
"aligned_graphemes": row["seg"].strip().split(),
|
114 |
+
}
|
115 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
116 |
+
for i, row in df.iterrows():
|
117 |
+
yield i, {
|
118 |
+
"id": str(i),
|
119 |
+
"text_1": row["ori"],
|
120 |
+
"text_2": row["roman"],
|
121 |
+
"text_1_name": "original",
|
122 |
+
"text_2_name": "romanized",
|
123 |
+
}
|