from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks, Licenses _CITATION = """\ @inproceedings{chenchen2017statistical, author = {Ding Chenchen and Chea Vichet and Pa Win Pa and Utiyama Masao and Sumita Eiichiro}, title = {Statistical Romanization for Abugida Scripts: Data and Experiment on Khmer and Burmese}, booktitle = {Proceedings of the 23rd Annual Conference of the Association for Natural Language Processing, {NLP2017}, Tsukuba, Japan, 13-17 March 2017}, year = {2017}, url = {https://www.anlp.jp/proceedings/annual_meeting/2017/pdf_dir/P5-7.pdf}, } """ _DATASETNAME = "burmese_romanize" _DESCRIPTION = """\ This dataset consists of 2,335 Burmese names from real university students and faculty, public figures, and minorities from Myanmar. Each entry includes the original name in Burmese script, its corresponding Romanization, and the aligned Burmese and Latin graphemes. """ _HOMEPAGE = "http://www.nlpresearch-ucsy.edu.mm/NLP_UCSY/name-db.html" _LANGUAGES = ["mya"] _LICENSE = Licenses.CC_BY_NC_SA_4_0.value _URLS = "http://www.nlpresearch-ucsy.edu.mm/NLP_UCSY/myanmaroma.zip" _SUPPORTED_TASKS = [Tasks.TRANSLITERATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _LOCAL = False class BurmeseRomanizeDataset(datasets.GeneratorBasedBuilder): """Romanization of names in Burmese script""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "t2t" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "original": datasets.Value("string"), "romanized": datasets.Value("string"), "aligned_graphemes": datasets.Sequence(datasets.Value("string")), } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: data_dir = Path(dl_manager.download_and_extract(_URLS)) / "myanmaroma" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir / "myanmaroma.txt", "split": "train", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: df = pd.read_csv(filepath, sep=" \|\|\| ", engine='python', header=None, names=["ori", "roman", "seg"]) if self.config.schema == "source": for i, row in df.iterrows(): yield i, { "original": row["ori"], "romanized": row["roman"], "aligned_graphemes": row["seg"].strip().split(), } elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": for i, row in df.iterrows(): yield i, { "id": str(i), "text_1": row["ori"], "text_2": row["roman"], "text_1_name": "original", "text_2_name": "romanized", }