holylovenia commited on
Commit
870016b
1 Parent(s): ee19908

Upload id_google_play_review.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. id_google_play_review.py +154 -0
id_google_play_review.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import Dict, List, Tuple
3
+
4
+ import datasets
5
+ import pandas as pd
6
+
7
+ from seacrowd.utils import schemas
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import Tasks
10
+
11
+ _CITATION = """\
12
+ @misc{
13
+ research,
14
+ title={Jakartaresearch/google-play-review · datasets at hugging face},
15
+ url={https://huggingface.co/datasets/jakartaresearch/google-play-review},
16
+ author={Research, Jakarta AI}
17
+ }
18
+ """
19
+
20
+ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
21
+ _LOCAL = False
22
+
23
+ _DATASETNAME = "id_google_play_review"
24
+ _DESCRIPTION = """\
25
+ Indonesian Google Play Review, dataset scrapped from e-commerce app on Google Play for sentiment analysis.
26
+ Total number of data: 10041 (train: 7028, validation: 3012). Provided by Jakarta AI Research.
27
+ """
28
+
29
+ _HOMEPAGE = "https://github.com/jakartaresearch/hf-datasets/tree/main/google-play-review/google-play-review"
30
+ _LICENSE = "CC-BY 4.0"
31
+
32
+ _URLS = {
33
+ _DATASETNAME: {
34
+ "train": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/train.csv",
35
+ "valid": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/validation.csv",
36
+ }
37
+ }
38
+
39
+ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
40
+
41
+ _SOURCE_VERSION = "1.0.0"
42
+ _SEACROWD_VERSION = "2024.06.20"
43
+
44
+
45
+ class IDGooglePlayReview(datasets.GeneratorBasedBuilder):
46
+ """
47
+ Indonesian Google Play Review is a dataset containing reviews from Google Play Indonesia, used for sentiment
48
+ analysis.
49
+ The language content is mainly Indonesian, however beware of context-switching (some sentences are partly or
50
+ entirely in English).
51
+ The available labels:
52
+ label: ['pos', 'neg'] for source and seacrowd_text scheme
53
+ stars: [1, 2, 3, 4, 5] for source
54
+ """
55
+
56
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
57
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
58
+
59
+ BUILDER_CONFIGS = [
60
+ SEACrowdConfig(
61
+ name="id_google_play_review_source",
62
+ version=SOURCE_VERSION,
63
+ description="id_google_play_review source schema",
64
+ schema="source",
65
+ subset_id="id_google_play_review",
66
+ ),
67
+ SEACrowdConfig(
68
+ name="id_google_play_review_posneg_source",
69
+ version=SOURCE_VERSION,
70
+ description="id_google_play_review source schema",
71
+ schema="source",
72
+ subset_id="id_google_play_review_posneg",
73
+ ),
74
+ SEACrowdConfig(
75
+ name="id_google_play_review_seacrowd_text",
76
+ version=SEACROWD_VERSION,
77
+ description="id_google_play_review Nusantara schema, 1-5 stars rating only (for pos/neg labels, please use the subset_id \"id_google_play_review_posneg\")",
78
+ schema="seacrowd_text",
79
+ subset_id="id_google_play_review",
80
+ ),
81
+ SEACrowdConfig(
82
+ name="id_google_play_review_posneg_seacrowd_text",
83
+ version=SEACROWD_VERSION,
84
+ description="id_google_play_review Nusantara schema, pos/neg label only",
85
+ schema="seacrowd_text",
86
+ subset_id="id_google_play_review_posneg",
87
+ ),
88
+ ]
89
+
90
+ DEFAULT_CONFIG_NAME = "id_google_play_review_source"
91
+
92
+ def _info(self) -> datasets.DatasetInfo:
93
+
94
+ # Create the source schema; this schema will keep all keys/information/labels as close to the original dataset
95
+ # as possible.
96
+
97
+ # You can arbitrarily nest lists and dictionaries.
98
+ # For iterables, use lists over tuples or `datasets.Sequence`
99
+
100
+ if self.config.schema == "source":
101
+ features = datasets.Features({
102
+ "text": datasets.Value("string"),
103
+ "label": datasets.Value("string"),
104
+ "stars": datasets.Value("int8")
105
+ })
106
+ elif self.config.schema == "seacrowd_text":
107
+ if self.config.subset_id == "id_google_play_review_posneg":
108
+ features = schemas.text_features(["pos", "neg"])
109
+ elif self.config.subset_id == "id_google_play_review":
110
+ features = schemas.text_features(["1", "2", "3", "4", "5"])
111
+ else:
112
+ raise ValueError(f"Invalid config: {self.config.name}")
113
+
114
+ return datasets.DatasetInfo(
115
+ description=_DESCRIPTION,
116
+ features=features,
117
+ homepage=_HOMEPAGE,
118
+ license=_LICENSE,
119
+ citation=_CITATION,
120
+ )
121
+
122
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
123
+ """Returns SplitGenerators."""
124
+ urls = _URLS[_DATASETNAME]
125
+ train_data_path = Path(dl_manager.download(urls["train"]))
126
+ valid_data_path = Path(dl_manager.download(urls["valid"]))
127
+
128
+ return [
129
+ datasets.SplitGenerator(
130
+ name=datasets.Split.TRAIN,
131
+ gen_kwargs={"filepath": train_data_path, "split": "train"},
132
+ ),
133
+ datasets.SplitGenerator(
134
+ name=datasets.Split.VALIDATION,
135
+ gen_kwargs={"filepath": valid_data_path, "split": "valid"},
136
+ ),
137
+ ]
138
+
139
+ def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
140
+ """Yields examples as (key, example) tuples."""
141
+
142
+ df = pd.read_csv(filepath, sep=",").reset_index()
143
+ for row in df.itertuples(index=False):
144
+ if self.config.schema == "source":
145
+ example = {"text": row.text, "label": row.label, "stars": row.stars}
146
+ yield row.index, example
147
+ elif self.config.schema == "seacrowd_text":
148
+ if self.config.subset_id == "id_google_play_review_posneg":
149
+ example = {"id": row.index, "text": row.text, "label": row.label}
150
+ elif self.config.subset_id == "id_google_play_review":
151
+ example = {"id": row.index, "text": row.text, "label": str(row.stars)}
152
+ else:
153
+ raise ValueError(f"Invalid config: {self.config.name}")
154
+ yield row.index, example