from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _CITATION = """\ @misc{ research, title={Jakartaresearch/google-play-review ยท datasets at hugging face}, url={https://huggingface.co/datasets/jakartaresearch/google-play-review}, author={Research, Jakarta AI} } """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DATASETNAME = "id_google_play_review" _DESCRIPTION = """\ Indonesian Google Play Review, dataset scrapped from e-commerce app on Google Play for sentiment analysis. Total number of data: 10041 (train: 7028, validation: 3012). Provided by Jakarta AI Research. """ _HOMEPAGE = "https://github.com/jakartaresearch/hf-datasets/tree/main/google-play-review/google-play-review" _LICENSE = "CC-BY 4.0" _URLS = { _DATASETNAME: { "train": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/train.csv", "valid": "https://media.githubusercontent.com/media/jakartaresearch/hf-datasets/main/google-play-review/google-play-review/validation.csv", } } _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class IDGooglePlayReview(datasets.GeneratorBasedBuilder): """ Indonesian Google Play Review is a dataset containing reviews from Google Play Indonesia, used for sentiment analysis. The language content is mainly Indonesian, however beware of context-switching (some sentences are partly or entirely in English). The available labels: label: ['pos', 'neg'] for source and seacrowd_text scheme stars: [1, 2, 3, 4, 5] for source """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="id_google_play_review_source", version=SOURCE_VERSION, description="id_google_play_review source schema", schema="source", subset_id="id_google_play_review", ), SEACrowdConfig( name="id_google_play_review_posneg_source", version=SOURCE_VERSION, description="id_google_play_review source schema", schema="source", subset_id="id_google_play_review_posneg", ), SEACrowdConfig( name="id_google_play_review_seacrowd_text", version=SEACROWD_VERSION, description="id_google_play_review Nusantara schema, 1-5 stars rating only (for pos/neg labels, please use the subset_id \"id_google_play_review_posneg\")", schema="seacrowd_text", subset_id="id_google_play_review", ), SEACrowdConfig( name="id_google_play_review_posneg_seacrowd_text", version=SEACROWD_VERSION, description="id_google_play_review Nusantara schema, pos/neg label only", schema="seacrowd_text", subset_id="id_google_play_review_posneg", ), ] DEFAULT_CONFIG_NAME = "id_google_play_review_source" def _info(self) -> datasets.DatasetInfo: # Create the source schema; this schema will keep all keys/information/labels as close to the original dataset # as possible. # You can arbitrarily nest lists and dictionaries. # For iterables, use lists over tuples or `datasets.Sequence` if self.config.schema == "source": features = datasets.Features({ "text": datasets.Value("string"), "label": datasets.Value("string"), "stars": datasets.Value("int8") }) elif self.config.schema == "seacrowd_text": if self.config.subset_id == "id_google_play_review_posneg": features = schemas.text_features(["pos", "neg"]) elif self.config.subset_id == "id_google_play_review": features = schemas.text_features(["1", "2", "3", "4", "5"]) else: raise ValueError(f"Invalid config: {self.config.name}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] train_data_path = Path(dl_manager.download(urls["train"])) valid_data_path = Path(dl_manager.download(urls["valid"])) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_data_path, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_data_path, "split": "valid"}, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" df = pd.read_csv(filepath, sep=",").reset_index() for row in df.itertuples(index=False): if self.config.schema == "source": example = {"text": row.text, "label": row.label, "stars": row.stars} yield row.index, example elif self.config.schema == "seacrowd_text": if self.config.subset_id == "id_google_play_review_posneg": example = {"id": row.index, "text": row.text, "label": row.label} elif self.config.subset_id == "id_google_play_review": example = {"id": row.index, "text": row.text, "label": str(row.stars)} else: raise ValueError(f"Invalid config: {self.config.name}") yield row.index, example