|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{ibrohim-budi-2019-multi, |
|
title = "Multi-label Hate Speech and Abusive Language Detection in {I}ndonesian {T}witter", |
|
author = "Ibrohim, Muhammad Okky and |
|
Budi, Indra", |
|
booktitle = "Proceedings of the Third Workshop on Abusive Language Online", |
|
month = aug, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W19-3506", |
|
doi = "10.18653/v1/W19-3506", |
|
pages = "46--57", |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "id_multilabel_hs" |
|
|
|
_DESCRIPTION = """\ |
|
The ID_MULTILABEL_HS dataset is collection of 13,169 tweets in Indonesian language, |
|
designed for hate speech detection NLP task. This dataset is combination from previous research and newly crawled data from Twitter. |
|
This is a multilabel dataset with label details as follows: |
|
-HS : hate speech label; |
|
-Abusive : abusive language label; |
|
-HS_Individual : hate speech targeted to an individual; |
|
-HS_Group : hate speech targeted to a group; |
|
-HS_Religion : hate speech related to religion/creed; |
|
-HS_Race : hate speech related to race/ethnicity; |
|
-HS_Physical : hate speech related to physical/disability; |
|
-HS_Gender : hate speech related to gender/sexual orientation; |
|
-HS_Gender : hate related to other invective/slander; |
|
-HS_Weak : weak hate speech; |
|
-HS_Moderate : moderate hate speech; |
|
-HS_Strong : strong hate speech. |
|
""" |
|
|
|
_HOMEPAGE = "https://aclanthology.org/W19-3506/" |
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International" |
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection/master/re_dataset.csv", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdAbusive(datasets.GeneratorBasedBuilder): |
|
"""The ID_MULTILABEL_HS dataset is multi-label hate speech and abusive language detection in Indonesian tweets""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_multilabel_hs_source", |
|
version=SOURCE_VERSION, |
|
description="ID Multilabel HS source schema", |
|
schema="source", |
|
subset_id="id_multilabel_hs", |
|
), |
|
SEACrowdConfig( |
|
name="id_multilabel_hs_seacrowd_text_multi", |
|
version=SEACROWD_VERSION, |
|
description="ID Multilabel HS Nusantara schema", |
|
schema="seacrowd_text_multi", |
|
subset_id="id_multilabel_hs", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_multilabel_hs_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({ |
|
"tweet": datasets.Value("string"), |
|
"HS": datasets.Value("bool"), |
|
"Abusive": datasets.Value("bool"), |
|
"HS_Individual": datasets.Value("bool"), |
|
"HS_Group": datasets.Value("bool"), |
|
"HS_Religion": datasets.Value("bool"), |
|
"HS_Race": datasets.Value("bool"), |
|
"HS_Physical": datasets.Value("bool"), |
|
"HS_Gender": datasets.Value("bool"), |
|
"HS_Other": datasets.Value("bool"), |
|
"HS_Weak": datasets.Value("bool"), |
|
"HS_Moderate": datasets.Value("bool"), |
|
"HS_Strong": datasets.Value("bool"), |
|
}) |
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features([0, 1]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
base_dir = Path(dl_manager.download_and_extract(urls)) |
|
data_files = {"train": base_dir} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
label_cols = ["HS", "Abusive", "HS_Individual", "HS_Group", "HS_Religion", "HS_Race", "HS_Physical", "HS_Gender", "HS_Other", "HS_Weak", "HS_Moderate", "HS_Strong"] |
|
df = pd.read_csv(filepath, encoding="ISO-8859-1").reset_index() |
|
df.columns = ["id", "tweet"] + label_cols |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = { |
|
"tweet": row.tweet, |
|
} |
|
for label in label_cols: |
|
ex[label] = getattr(row, label) |
|
yield row.id, ex |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row.id), |
|
"text": row.tweet, |
|
"labels": [label for label in row[3:]], |
|
} |
|
yield row.id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|