|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DATASETNAME = "id_sts" |
|
|
|
_DESCRIPTION = """\ |
|
SemEval is a series of international natural language processing (NLP) research workshops whose mission is |
|
to advance the current state of the art in semantic analysis and to help create high-quality annotated datasets in a |
|
range of increasingly challenging problems in natural language semantics. This is a translated version of SemEval Dataset |
|
from 2012-2016 for Semantic Textual Similarity Task to Indonesian language. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ahmadizzan/sts-indo" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/ahmadizzan/sts-indo/master/data/final-data/train.tsv", |
|
"test": "https://raw.githubusercontent.com/ahmadizzan/sts-indo/master/data/final-data/test.tsv", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdSts(datasets.GeneratorBasedBuilder): |
|
"""id_sts, translated version of SemEval Dataset |
|
from 2012-2016 for Semantic Textual Similarity Task to Indonesian language""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_sts_source", |
|
version=SOURCE_VERSION, |
|
description="ID_STS source schema", |
|
schema="source", |
|
subset_id="id_sts", |
|
), |
|
SEACrowdConfig( |
|
name="id_sts_seacrowd_pairs_score", |
|
version=SEACROWD_VERSION, |
|
description="ID_STS Nusantara schema", |
|
schema="seacrowd_pairs_score", |
|
subset_id="id_sts", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_sts_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"label": datasets.Value("float64"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_pairs_score": |
|
features = schemas.pairs_features_score() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
train_data_path = Path(dl_manager.download(urls["train"])) |
|
test_data_path = Path(dl_manager.download(urls["test"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": train_data_path, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": test_data_path, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.read_csv(filepath, delimiter="\t").reset_index() |
|
df.columns = ["id", "score", "original_text_1", "original_text_2", "source", "text_1", "text_2"] |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = {"text_1": row.text_1, "text_2": row.text_2, "label": row.score} |
|
yield row.id, ex |
|
|
|
elif self.config.schema == "seacrowd_pairs_score": |
|
for row in df.itertuples(): |
|
ex = {"id": str(row.id), "text_1": row.text_1, "text_2": row.text_2, "label": row.score} |
|
yield row.id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|