File size: 4,899 Bytes
dda341c 2f3264a dda341c 2f3264a dda341c 2f3264a dda341c 2f3264a dda341c 2f3264a dda341c 2f3264a dda341c 2f3264a dda341c 2f3264a dda341c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import pandas as pd
_CITATION = """\
@inproceedings{wongso2021causal,
title={Causal and masked language modeling of Javanese language using transformer-based architectures},
author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin},
booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)},
pages={1--7},
year={2021},
organization={IEEE}
}
"""
_DATASETNAME = "imdb_jv"
_DESCRIPTION = """\
Javanese Imdb Movie Reviews Dataset is a Javanese version of the IMDb Movie Reviews dataset by translating the original English dataset to Javanese.
"""
_HOMEPAGE = "https://huggingface.co/datasets/w11wo/imdb-javanese"
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: "https://huggingface.co/datasets/w11wo/imdb-javanese/resolve/main/javanese_imdb_csv.zip",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IMDbJv(datasets.GeneratorBasedBuilder):
"""Javanese Imdb Movie Reviews Dataset is a Javanese version of the IMDb Movie Reviews dataset by translating the original English dataset to Javanese."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="imdb_jv_source",
version=datasets.Version(_SOURCE_VERSION),
description="imdb_jv source schema",
schema="source",
subset_id="imdb_jv",
),
SEACrowdConfig(
name="imdb_jv_seacrowd_text",
version=datasets.Version(_SEACROWD_VERSION),
description="imdb_jv Nusantara schema",
schema="seacrowd_text",
subset_id="imdb_jv",
),
]
DEFAULT_CONFIG_NAME = "imdb_jv_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value("string")
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(['1', '0', '-1'])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME]))
data_files = {
"train": "javanese_imdb_train.csv",
"unsupervised": "javanese_imdb_unsup.csv",
"test": "javanese_imdb_test.csv",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, data_files["train"]),
"split": "train",
},
),
datasets.SplitGenerator(
name="unsupervised",
gen_kwargs={
"filepath": os.path.join(data_dir, data_files["unsupervised"]),
"split": "unsupervised",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, data_files["test"]),
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
if self.config.schema == "source":
data = pd.read_csv(filepath)
length = len(data['label'])
for id in range(length):
ex = {
"id": str(id),
"text": data['text'][id],
"label": data['label'][id],
}
yield id, ex
elif self.config.schema == "seacrowd_text":
data = pd.read_csv(filepath)
length = len(data['label'])
for id in range(length):
ex = {
"id": str(id),
"text": data['text'][id],
"label": data['label'][id],
}
yield id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|