Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 4,586 Bytes
57c976e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import pickle
from pathlib import Path
from typing import List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@misc{andreaschandra2020,
  author    = {Chandra, Andreas},
  title     = {Indonesian News Dataset},
  year      = {2020},
  howpublished = {Online},
  url       = {https://github.com/andreaschandra/indonesian-news},
  note      = {Accessed: 2024-02-13},
}
"""

_LANGUAGES = ["ind"]

_DATASETNAME = "indonesian_news_dataset"

_DESCRIPTION = """An imbalanced dataset to classify Indonesian News articles.
The dataset contains 5 class labels: bola, news, bisnis, tekno, and otomotif.
The dataset comprises of around 6k train and 2.5k test examples, with the more prevalent classes
(bola and news) having roughly 10x the number of train and test examples than the least prevalent class (otomotif).
"""

_HOMEPAGE = "https://github.com/andreaschandra/indonesian-news"

_LICENSE = Licenses.UNKNOWN.value

_URLS = {
    f"{_DATASETNAME}_train": "https://drive.usercontent.google.com/u/0/uc?id=1wCwPMKSyTciv8I3g9xGdUfEraA1SydG6&export=download",
    f"{_DATASETNAME}_test": "https://drive.usercontent.google.com/u/0/uc?id=1AFW_5KQFW86jlFO16S9bt564Y86WoJjV&export=download",
}

_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

_TAGS = ["bola", "news", "bisnis", "tekno", "otomotif"]

_LOCAL = False


class IndonesianNewsDataset(datasets.GeneratorBasedBuilder):
    """The dataset contains 5 Indonesian News articles with imbalanced classes"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    SEACROWD_SCHEMA_NAME = "text"

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features({"index": datasets.Value("string"), "news": datasets.Value("string"), "label": datasets.Value("string")})
        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.text_features(_TAGS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        train_dir = Path(dl_manager.download(_URLS[f"{_DATASETNAME}_train"]))
        test_dir = Path(dl_manager.download(_URLS[f"{_DATASETNAME}_test"]))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": test_dir,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str):
        """Yields examples as (key, example) tuples."""

        with open(filepath, "rb") as file:
            news_file = pickle.load(file)

        news_list = news_file[0]
        label_list = news_file[1]

        if self.config.schema == "source":
            for idx, (news, label) in enumerate(zip(news_list, label_list)):
                example = {"index": str(idx), "news": news, "label": label}
                yield idx, example
        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            for idx, (news, label) in enumerate(zip(news_list, label_list)):
                example = {"id": str(idx), "text": news, "label": label}
                yield idx, example
        else:
            raise ValueError(f"Invalid config: {self.config.name}")