|
import pickle |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{andreaschandra2020, |
|
author = {Chandra, Andreas}, |
|
title = {Indonesian News Dataset}, |
|
year = {2020}, |
|
howpublished = {Online}, |
|
url = {https://github.com/andreaschandra/indonesian-news}, |
|
note = {Accessed: 2024-02-13}, |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_DATASETNAME = "indonesian_news_dataset" |
|
|
|
_DESCRIPTION = """An imbalanced dataset to classify Indonesian News articles. |
|
The dataset contains 5 class labels: bola, news, bisnis, tekno, and otomotif. |
|
The dataset comprises of around 6k train and 2.5k test examples, with the more prevalent classes |
|
(bola and news) having roughly 10x the number of train and test examples than the least prevalent class (otomotif). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/andreaschandra/indonesian-news" |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_URLS = { |
|
f"{_DATASETNAME}_train": "https://drive.usercontent.google.com/u/0/uc?id=1wCwPMKSyTciv8I3g9xGdUfEraA1SydG6&export=download", |
|
f"{_DATASETNAME}_test": "https://drive.usercontent.google.com/u/0/uc?id=1AFW_5KQFW86jlFO16S9bt564Y86WoJjV&export=download", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TOPIC_MODELING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_TAGS = ["bola", "news", "bisnis", "tekno", "otomotif"] |
|
|
|
_LOCAL = False |
|
|
|
|
|
class IndonesianNewsDataset(datasets.GeneratorBasedBuilder): |
|
"""The dataset contains 5 Indonesian News articles with imbalanced classes""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "news": datasets.Value("string"), "label": datasets.Value("string")}) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(_TAGS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
train_dir = Path(dl_manager.download(_URLS[f"{_DATASETNAME}_train"])) |
|
test_dir = Path(dl_manager.download(_URLS[f"{_DATASETNAME}_test"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_dir, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, "rb") as file: |
|
news_file = pickle.load(file) |
|
|
|
news_list = news_file[0] |
|
label_list = news_file[1] |
|
|
|
if self.config.schema == "source": |
|
for idx, (news, label) in enumerate(zip(news_list, label_list)): |
|
example = {"index": str(idx), "news": news, "label": label} |
|
yield idx, example |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for idx, (news, label) in enumerate(zip(news_list, label_list)): |
|
example = {"id": str(idx), "text": news, "label": label} |
|
yield idx, example |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|