File size: 8,445 Bytes
a7225ff
 
 
 
 
 
 
e8e0a64
 
 
a7225ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e0a64
a7225ff
 
 
 
 
 
 
e8e0a64
a7225ff
 
 
 
 
 
e8e0a64
a7225ff
 
 
 
 
 
e8e0a64
 
a7225ff
 
e8e0a64
a7225ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e0a64
a7225ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8e0a64
a7225ff
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import json
import os

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from zipfile import ZipFile

_CITATION = """\
@inproceedings{sani-cocosda-2012,
    title = "Towards Language Preservation: Preliminary Collection and Vowel Analysis of {I}ndonesian Ethnic Speech Data",
    author = "Sani, Auliya and Sakti, Sakriani and Neubig, Graham and Toda, Tomoki and Mulyanto, Adi and Nakamura, Satoshi",
    booktitle = "Proc. Oriental COCOSDA",
    year = "2012",
    pages = "118--122"
    address = "Macau, China"
}
"""

_LOCAL = False
_LANGUAGES = ["sun", "jav"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_DATASETNAME = "indspeech_news_ethnicsr"

_DESCRIPTION = """
INDspeech_NEWS_EthnicSR is a collection of Indonesian ethnic speech corpora for Javanese and Sundanese for Indonesian ethnic speech recognition. It was developed in 2012 by the Nara Institute of Science and Technology (NAIST, Japan) in collaboration with the Bandung Institute of Technology (ITB, Indonesia) [Sani et al., 2012].
"""

_HOMEPAGE = "https://github.com/s-sakti/data_indsp_news_ethnicsr"

_LICENSE = "CC-BY-NC-SA 4.0"

_URLS = {
    _DATASETNAME: "https://github.com/s-sakti/data_indsp_news_ethnicsr/archive/refs/heads/main.zip",
}

_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class IndSpeechNewsEthnicSR(datasets.GeneratorBasedBuilder):
    """INDspeech_NEWS_EthnicSR is a collection of Indonesian ethnic speech corpora for Javanese and Sundanese for Indonesian ethnic speech recognition. It was developed in 2012 by the Nara Institute of Science and Technology (NAIST, Japan) in collaboration with the Bandung Institute of Technology (ITB, Indonesia) [Sani et al., 2012]."""


    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    
    BUILDER_CONFIGS = []
    
    for fold_id in ["overlap", "nooverlap"]:
        for fold_name in ['jv', "su"]:
            BUILDER_CONFIGS.extend(
                [SEACrowdConfig(
                    name=f"indspeech_news_ethnicsr_{fold_name}_{fold_id}_source",
                    version=_SOURCE_VERSION,
                    description="indspeech_news_ethnicsr source schema",
                    schema="source",
                    subset_id=f"indspeech_news_ethnicsr_{fold_name}_{fold_id}"
                ),
                SEACrowdConfig(
                    name=f"indspeech_news_ethnicsr_{fold_name}_{fold_id}_seacrowd_sptext",
                    version=_SOURCE_VERSION,
                    description="indspeech_news_ethnicsr Nusantara schema",
                    schema="seacrowd_sptext",
                    subset_id=f"indspeech_news_ethnicsr_{fold_name}_{fold_id}"
                ),]
            ) 
            
    DEFAULT_CONFIG_NAME = "indspeech_news_ethnicsr_jv_nooverlap_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
               {
                   "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
               }
            )

        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
        )


    def _get_fold_name_id(self):
        subset_id = self.config.subset_id
        subset_id_list = subset_id.split('_')
        fold_name = subset_id_list[-2]
        fold_id = subset_id_list[-1]
        if fold_id == "overlap":
            fold_id = 1
        elif fold_id == "nooverlap":
            fold_id = 2
        return fold_name, fold_id
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        fold_name, fold_id = self._get_fold_name_id()
        if fold_name == 'su':
            fold_name1 = "Sunda"
            fold_name2 = 'Snd'
            
        else:
            fold_name1 = 'Jawa'
            fold_name2 = 'Jaw'
        
        urls = _URLS[_DATASETNAME]
        data_dir = Path(dl_manager.download_and_extract(urls))
#         print("data_dir", data_dir)
        text_file = os.path.join(data_dir, f"data_indsp_news_ethnicsr-main/{fold_name1}/text/transcript.txt")
        wav_folder = os.path.join(data_dir, f"data_indsp_news_ethnicsr-main/{fold_name1}/speech/16kHz/")
        train_list = os.path.join(data_dir, f"data_indsp_news_ethnicsr-main/{fold_name1}/lst/dataset{fold_id}_train_news_{fold_name2}.lst")
        test_list = os.path.join(data_dir, f"data_indsp_news_ethnicsr-main/{fold_name1}/lst/dataset{fold_id}_test_news_{fold_name2}.lst")
        
        #unzip        
        for speaker_id in range(1, 11):
            speaker_id = "%03d" % (speaker_id)
            zip_file = os.path.join(wav_folder, f"{fold_name2}{speaker_id}.zip")
            out_folder = os.path.join(wav_folder, f"{fold_name2}{speaker_id}")
            if not os.path.exists(out_folder):
                with ZipFile(zip_file, 'r') as f:
                    f.extractall(out_folder)
                    
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,

                gen_kwargs={
                    "wav_folder": wav_folder,
                    "text_path": text_file,
                    "split": "train",
                    "fold_name": fold_name,
                    "file_list": train_list,
                },
            ),
            
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "wav_folder": wav_folder,
                    "text_path": text_file,
                    "split": "test",
                    "fold_name": fold_name,
                    "file_list": test_list,
                },
            )
        ]
    

    def _generate_examples(self, wav_folder: Path, text_path: Path, split: str, fold_name: str, file_list: Path) -> Tuple[int, Dict]:
        if fold_name == 'su':
            fold_name2 = 'Snd'
        else:
            fold_name2 = 'Jaw'
            
        id2text = {}
        with open(text_path, "r", encoding='unicode_escape') as f:
            for text_idx, line in enumerate(f.readlines()):
                id2text.update({"%04d" % (text_idx + 1):line.strip()})
                
        
        wave_list = []
        with open(file_list) as f:
            for l in f.readlines():
                audio_id = l.strip()[:-4]
                speaker_id = audio_id.split('_')[0][-3:]
                text_id = audio_id.split('_')[-1]
                text = id2text[text_id]
                
                wav_path = os.path.join(wav_folder, audio_id.split('_')[0], l.strip())
                if not os.path.exists(wav_path):
                    print('no exisit wav_path', wav_path)
                assert os.path.exists(wav_path)
                
                if self.config.schema == "source":
                    ex = {
                        "id": audio_id,
                        "speaker_id": speaker_id,
                        "path": wav_path,
                        "audio": wav_path,
                        "text": text,
                    }
                    yield audio_id, ex

                elif self.config.schema == "seacrowd_sptext":
                    ex = {
                        "id": audio_id,
                        "speaker_id": speaker_id,
                        "path": wav_path,
                        "audio": wav_path,
                        "text": text,
                        "metadata": {
                            "speaker_age": None,
                            "speaker_gender": audio_id.split("_")[1],
                        }
                    }
                    yield audio_id, ex