kamus_alay / kamus_alay.py
holylovenia's picture
Upload kamus_alay.py with huggingface_hub
a6955a6 verified
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import pandas as pd
_CITATION = """\
@INPROCEEDINGS{8629151,
author={Aliyah Salsabila, Nikmatun and Ardhito Winatmoko, Yosef and Akbar Septiandri, Ali and Jamal, Ade},
booktitle={2018 International Conference on Asian Language Processing (IALP)},
title={Colloquial Indonesian Lexicon},
year={2018},
volume={},
number={},
pages={226-229},
doi={10.1109/IALP.2018.8629151}}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "kamus_alay"
_DESCRIPTION = """\
Kamus Alay provide a lexicon for text normalization of Indonesian colloquial words.
It contains 3,592 unique colloquial words-also known as “bahasa alay” -and manually annotated them
with the normalized form. We built this lexicon from Instagram comments provided by Septiandri & Wibisono (2017)
"""
_HOMEPAGE = "https://ieeexplore.ieee.org/abstract/document/8629151"
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: "https://raw.githubusercontent.com/nasalsabila/kamus-alay/master/colloquial-indonesian-lexicon.csv",
}
_SUPPORTED_TASKS = [Tasks.MORPHOLOGICAL_INFLECTION]
# Dataset does not have versioning
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class KamusAlay(datasets.GeneratorBasedBuilder):
"""Kamus Alay is a dataset of lexicon for text normalization of Indonesian colloquial word"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
label_classes = [
"abreviasi",
"afiksasi",
"akronim",
"anaptiksis",
"coinage",
"elongasi",
"homofon",
"metatesis",
"modifikasi vokal",
"monoftongisasi",
"naturalisasi",
"pungtuasi",
"reduplikasi",
"salah ketik",
"subtitusi",
"word-value letter",
"zeroisasi",
]
BUILDER_CONFIGS = [
SEACrowdConfig(
name="kamus_alay_source",
version=SOURCE_VERSION,
description="Kamus Alay source schema",
schema="source",
subset_id="kamus_alay",
),
SEACrowdConfig(
name="kamus_alay_seacrowd_pairs_multi",
version=SEACROWD_VERSION,
description="Kamus Alay Nusantara schema",
schema="seacrowd_pairs_multi",
subset_id="kamus_alay",
),
]
DEFAULT_CONFIG_NAME = "kamus_alay_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"slang": datasets.Value("string"),
"formal": datasets.Value("string"),
"in_dictionary": datasets.Value("bool"),
"context": datasets.Value("string"),
"categories": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_pairs_multi":
features = schemas.pairs_multi_features(self.label_classes)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = Path(dl_manager.download(urls))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# Dataset does not have id, using row index as id
df = pd.read_csv(filepath, encoding="ISO-8859-1").reset_index()
df.columns = ["id", "slang", "formal", "is_in_dictionary", "example", "category1", "category2", "category3"]
if self.config.schema == "source":
for row in df.itertuples():
ex = {
"slang": row.slang,
"formal": row.formal,
"in_dictionary": row.is_in_dictionary,
"context": row.example,
"categories": [c for c in (row.category1, row.category2, row.category3) if c != "0"],
}
yield row.id, ex
elif self.config.schema == "seacrowd_pairs_multi":
for row in df.itertuples():
ex = {
"id": str(row.id),
"text_1": row.formal,
"text_2": row.slang,
"label": [c for c in (row.category1, row.category2, row.category3) if c != "0"],
}
yield row.id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")