File size: 4,538 Bytes
f97919d 16f0d19 f97919d 16f0d19 f97919d 16f0d19 f97919d 16f0d19 f97919d 16f0d19 f97919d 16f0d19 f97919d 16f0d19 f97919d 16f0d19 f97919d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@article{karo2022sentiment,
title={Sentiment Analysis in Karonese Tweet using Machine Learning},
author={Karo, Ichwanul Muslim Karo and Fudzee, Mohd Farhan Md and Kasim, Shahreen and Ramli, Azizul Azhar},
journal={Indonesian Journal of Electrical Engineering and Informatics (IJEEI)},
volume={10},
number={1},
pages={219--231},
year={2022}
}
"""
_LANGUAGES = ["btx"]
_LOCAL = False
_DATASETNAME = "karonese_sentiment"
_DESCRIPTION = """\
Karonese sentiment was crawled from Twitter between 1 January 2021 and 31 October 2021.
The first crawling process used several keywords related to the Karonese, such as
"deleng sinabung, Sinabung mountain", "mejuah-juah, greeting welcome", "Gundaling",
and so on. However, due to the insufficient number of tweets obtained using such
keywords, a second crawling process was done based on several hashtags, such as
#kalakkaro, # #antonyginting, and #lyodra.
"""
_HOMEPAGE = "http://section.iaesonline.com/index.php/IJEEI/article/view/3565"
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: "https://raw.githubusercontent.com/aliakbars/karonese/main/karonese_sentiment.csv",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class KaroneseSentimentDataset(datasets.GeneratorBasedBuilder):
"""Karonese sentiment was crawled from Twitter between 1 January 2021 and 31 October 2021.
The dataset consists of 397 negative, 342 neutral, and 260 positive tweets.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="karonese_sentiment_source",
version=SOURCE_VERSION,
description="Karonese Sentiment source schema",
schema="source",
subset_id="karonese_sentiment",
),
SEACrowdConfig(
name="karonese_sentiment_seacrowd_text",
version=SEACROWD_VERSION,
description="Karonese Sentiment Nusantara schema",
schema="seacrowd_text",
subset_id="karonese_sentiment",
),
]
DEFAULT_CONFIG_NAME = "sentiment_nathasa_review_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"no": datasets.Value("string"),
"tweet": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["negative", "neutral", "positive"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
# Dataset does not have predetermined split, putting all as TRAIN
data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_csv(filepath).drop("no", axis=1)
df.columns = ["text", "label"]
if self.config.schema == "source":
for idx, row in df.iterrows():
example = {
"no": str(idx+1),
"tweet": row.text,
"label": row.label,
}
yield idx, example
elif self.config.schema == "seacrowd_text":
for idx, row in df.iterrows():
example = {
"id": str(idx+1),
"text": row.text,
"label": row.label,
}
yield idx, example
else:
raise ValueError(f"Invalid config: {self.config.name}")
|