|
from pathlib import Path |
|
from typing import List |
|
|
|
import re |
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_DATASETNAME = "korpus_nusantara" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind", "jav", "xdy", "bug", "sun", "mad", "bjn", "bbc", "khek", "msa", "min", "tiociu"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{sujaini2020improving, |
|
title={Improving the role of language model in statistical machine translation (Indonesian-Javanese)}, |
|
author={Sujaini, Herry}, |
|
journal={International Journal of Electrical and Computer Engineering}, |
|
volume={10}, |
|
number={2}, |
|
pages={2102}, |
|
year={2020}, |
|
publisher={IAES Institute of Advanced Engineering and Science} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This parallel corpus was collected from several studies, assignments, and thesis of |
|
students of the Informatics Study Program, Tanjungpura University. Some of the corpus |
|
are used in the translation machine from Indonesian to local languages http://nustor.untan.ac.id/cammane/. |
|
This corpus can be used freely for research purposes by citing the paper |
|
https://ijece.iaescore.com/index.php/IJECE/article/download/20046/13738. |
|
|
|
The dataset is a combination of multiple machine translation works from the author, |
|
Herry Sujaini, covering Indonesian to 25 local dialects in Indonesia. Since not all |
|
dialects have ISO639-3 standard coding, as agreed with Pak Herry , we decided to |
|
group the dataset into the closest language family, i.e.: Javanese, Dayak, Buginese, |
|
Sundanese, Madurese, Banjar, Batak Toba, Khek, Malay, Minangkabau, and Tiociu. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/herrysujaini/korpusnusantara" |
|
_LICENSE = "Unknown" |
|
_URLS = { |
|
_DATASETNAME: "https://github.com/herrysujaini/korpusnusantara/raw/main/korpus nusantara.xlsx", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
""" |
|
A collection of all the dialects are: javanese, javanese kromo, javanese ngoko, dayak ahe, |
|
dayak iban, dayak pesaguan, dayak taman, buginese kelolau, buginese wajo, sundanese, |
|
madurese, banjar, batak toba, khek pontianak, kapuas hulu, melayu kembayan, melayu ketapang, |
|
melayu melawi, melayu pontianak, melayu putussibau, melayu sambas, melayu sintang, padang, |
|
tiociu pontianak. |
|
|
|
In this project, we group the dialects into several subsets: |
|
|
|
Javanese (jav) : javanese, javanese kromo, javanese ngoko |
|
Dayak (day) : dayak ahe, dayak iban, dayak pesaguan, dayak taman |
|
Buginese (bug) : buginese kelolau, buginese wajo |
|
Sundanese (sun) : sundanese |
|
Madurese (mad) : madurese |
|
Banjar (bjn) : banjar |
|
Batak Toba (bbc) : batak toba |
|
Khek (khek) : khek pontianak, kapuas hulu |
|
Malay (msa) : melayu kembayan, melayu ketapang, melayu melawi, melayu pontianak, melayu putussibau, melayu sambas, melayu sintang |
|
Minangkabau (min): padang |
|
Tiociu (tiociu) : tiociu pontianak |
|
""" |
|
|
|
Domain2Subsets = { |
|
"jav": ['jawa', 'jawa kromo', 'jawa ngoko'], |
|
"xdy": ['dayak ahe', 'dayak iban', 'dayak pesaguan', 'dayak taman'], |
|
"bug": ['bugis kelolao', 'bugis wajo'], |
|
"sun": ['sunda'], |
|
"mad": ['madura'], |
|
"bjn": ['banjar'], |
|
"bbc": ['Batak'], |
|
"khek": ['kapuas hulu', 'Khek Pontianak'], |
|
"msa": ['melayu kembayan', 'melayu ketapang', 'melayu melawi', 'melayu pontianak', 'melayu putussibau', 'melayu sambas', 'melayu sintang'], |
|
"min": ['padang'], |
|
"tiociu": ['Tiociu Pontianak'], |
|
} |
|
|
|
class KorpusNusantara(datasets.GeneratorBasedBuilder): |
|
"""Bible En-Id is a machine translation dataset containing Indonesian-English parallel sentences collected from the bible..""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"korpus_nusantara_ind_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"Korpus_Nusantara ind2{subset} source schema", |
|
schema="source", |
|
subset_id=f"korpus_nusantara", |
|
) |
|
for subset in _LANGUAGES[1:] |
|
] + \ |
|
[ |
|
SEACrowdConfig( |
|
name=f"korpus_nusantara_ind_{subset}_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"Korpus_Nusantara ind2{subset} Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id=f"korpus_nusantara", |
|
) |
|
for subset in _LANGUAGES[1:] |
|
] + \ |
|
[ |
|
SEACrowdConfig( |
|
name=f"korpus_nusantara_{subset}_ind_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"Korpus_Nusantara {subset}2ind source schema", |
|
schema="source", |
|
subset_id=f"korpus_nusantara", |
|
) |
|
for subset in _LANGUAGES[1:] |
|
] + \ |
|
[ |
|
SEACrowdConfig( |
|
name=f"korpus_nusantara_{subset}_ind_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"Korpus_Nusantara {subset}2ind Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id=f"korpus_nusantara", |
|
) |
|
for subset in _LANGUAGES[1:] |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "korpus_nusantara_jav_ind_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
base_dir = Path(dl_manager.download(urls)) |
|
data_files = {"train": base_dir} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
}, |
|
), |
|
] |
|
|
|
def _merge_subsets(self, dfs, subsets, revert=False): |
|
if not subsets: return None |
|
df = None |
|
for subset in subsets: |
|
sub_df = dfs[subset] |
|
orig_columns = sub_df.columns.tolist() |
|
sub_df.columns = ["label", "text"]+orig_columns[2:] if revert else ["text", "label"]+orig_columns[2:] |
|
if df is None: |
|
df = sub_df |
|
else: |
|
df = pd.concat([df, sub_df], axis=0, sort=False) |
|
return df |
|
|
|
def get_domain_data(self, dfs): |
|
domain = self.config.name |
|
matched_domain = re.findall(r"korpus_nusantara_.*?_.*?_", domain) |
|
|
|
assert len(matched_domain) == 1 |
|
domain = matched_domain[0][:-1].replace("korpus_nusantara_", "").split("_") |
|
src_lang, tgt_lang = domain[0], domain[1] |
|
|
|
subsets = Domain2Subsets.get(src_lang if src_lang != "ind" else tgt_lang, None) |
|
return src_lang, tgt_lang, self._merge_subsets(dfs, subsets, revert=(src_lang != "ind")) |
|
|
|
def _generate_examples(self, filepath: Path): |
|
"""Yields examples as (key, example) tuples.""" |
|
dfs = pd.read_excel(filepath, sheet_name=None, header=None) |
|
src_lang, tgt_lang, df = self.get_domain_data((dfs)) |
|
|
|
if self.config.schema == "source": |
|
for idx, row in enumerate(df.itertuples()): |
|
ex = { |
|
"id": str(idx), |
|
"text": row.text, |
|
"label": row.label, |
|
} |
|
yield idx, ex |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
for idx, row in enumerate(df.itertuples()): |
|
ex = { |
|
"id": str(idx), |
|
"text_1": row.text, |
|
"text_2": row.label, |
|
"text_1_name": src_lang, |
|
"text_2_name": tgt_lang, |
|
} |
|
yield idx, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|