mabl / mabl.py
holylovenia's picture
Upload mabl.py with huggingface_hub
d66ed6a verified
import csv
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = r"""
@inproceedings{kabra-etal-2023-multi,
title = "Multi-lingual and Multi-cultural Figurative Language Understanding",
author = "Kabra, Anubha and
Liu, Emmy and
Khanuja, Simran and
Aji, Alham Fikri and
Winata, Genta and
Cahyawijaya, Samuel and
Aremu, Anuoluwapo and
Ogayo, Perez and
Neubig, Graham",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.525",
doi = "10.18653/v1/2023.findings-acl.525",
pages = "8269--8284",
}
"""
_LOCAL = False
_LANGUAGES = ["ind", "jav", "sun"]
_DATASETNAME = "mabl"
_DESCRIPTION = r"""\
The MABL (Metaphors Across Borders and Languages) dataset is a collection of
6,366 figurative language expressions from seven languages, crafted to improve
multilingual models' understanding of figurative speech and its linguistic
variations. It was built by crowdsourcing native speakers to generate paired
metaphors that began with the same words but had different meanings, as well as
the literal interpretations of both phrases. Each expression was checked by
fluent speakers to ensure they were clear, appropriate, and followed the format,
discarding any that didn't meet these standards.
"""
_HOMEPAGE = "https://github.com/simran-khanuja/Multilingual-Fig-QA"
_LICENSE = Licenses.MIT.value
_URL = "https://raw.githubusercontent.com/simran-khanuja/Multilingual-Fig-QA/main/langdata/"
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
def iso3to2(lang: str) -> str:
"""Convert 3-letter ISO code to its 2-letter equivalent"""
iso_map = {"ind": "id", "jav": "jv", "sun": "su"}
return iso_map[lang]
class MABLDataset(datasets.GeneratorBasedBuilder):
"""MABL dataset by Liu et al (2023)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "qa"
dataset_names = sorted([f"{_DATASETNAME}_{lang}" for lang in _LANGUAGES])
BUILDER_CONFIGS = []
for name in dataset_names:
source_config = SEACrowdConfig(
name=f"{name}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=name,
)
BUILDER_CONFIGS.append(source_config)
seacrowd_config = SEACrowdConfig(
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=name,
)
BUILDER_CONFIGS.append(seacrowd_config)
# Add configuration that allows loading all languages at once.
BUILDER_CONFIGS.extend(
[
# mabl_source
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema (all)",
schema="source",
subset_id=_DATASETNAME,
),
# mabl_seacrowd_qa
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema (all)",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=_DATASETNAME,
),
]
)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"startphrase": datasets.Value("string"),
"ending1": datasets.Value("string"),
"ending2": datasets.Value("string"),
"labels": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
"""Return SplitGenerators."""
mabl_source_data = []
languages = []
lang = self.config.name.split("_")[1]
if lang in _LANGUAGES:
# Load data per language
mabl_source_data.append(dl_manager.download_and_extract(_URL + f"{iso3to2(lang)}.csv"))
languages.append(lang)
else:
# Load examples for all languages at once.
# We run this block when mabl_source / mabl_seacrowd_qa was chosen.
for lang in _LANGUAGES:
mabl_source_data.append(dl_manager.download_and_extract(_URL + f"{iso3to2(lang)}.csv"))
languages.append(lang)
return [
datasets.SplitGenerator(
# The MABL paper mentions that due to the size of each subset,
# they consider each split as a test set.
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": mabl_source_data,
"split": "test",
"languages": languages,
},
)
]
def _generate_examples(self, filepaths: List[Path], split: str, languages: List[str]) -> Tuple[int, Dict]:
"""Yield examples as (key, example) tuples"""
startphrases = []
endings1 = []
endings2 = []
labels = []
for lang, filepath in zip(languages, filepaths):
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, delimiter=",")
next(csv_reader, None) # skip the headers
for row in csv_reader:
# Unfortunately, the columns in the subfiles of the MABL
# dataset are inconsistent. For 'ind', it is [ending1,
# ending2, labels, startphrase]. But for 'jav' and 'sun',
# the labels and startphrase columns were switched. Here,
# I'm just hard-coding the column names
if lang == "ind":
end1, end2, label, start = row
if lang == "jav" or lang == "sun":
end1, end2, start, label = row
startphrases.append(start)
endings1.append(end1)
endings2.append(end2)
labels.append(label)
for idx, (start, end1, end2, label) in enumerate(zip(startphrases, endings1, endings2, labels)):
if self.config.schema == "source":
example = {
"id": str(idx),
"startphrase": start,
"ending1": end1,
"ending2": end2,
"labels": label,
}
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
# Create QA-specific items
choices = [end1, end2]
answer = choices[int(label)]
# MABL doesn't differentiate between question and context.
# It only contains a startphrase. Given that, I put the
# startphrase in question and kept the context blank.
example = {
"id": str(idx),
"question_id": idx,
"document_id": idx,
"question": start,
"type": "multiple_choice",
"choices": choices,
"context": "",
"answer": [answer],
"meta": {},
}
yield idx, example