|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = r""" |
|
@inproceedings{kabra-etal-2023-multi, |
|
title = "Multi-lingual and Multi-cultural Figurative Language Understanding", |
|
author = "Kabra, Anubha and |
|
Liu, Emmy and |
|
Khanuja, Simran and |
|
Aji, Alham Fikri and |
|
Winata, Genta and |
|
Cahyawijaya, Samuel and |
|
Aremu, Anuoluwapo and |
|
Ogayo, Perez and |
|
Neubig, Graham", |
|
editor = "Rogers, Anna and |
|
Boyd-Graber, Jordan and |
|
Okazaki, Naoaki", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", |
|
month = jul, |
|
year = "2023", |
|
address = "Toronto, Canada", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.findings-acl.525", |
|
doi = "10.18653/v1/2023.findings-acl.525", |
|
pages = "8269--8284", |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind", "jav", "sun"] |
|
_DATASETNAME = "mabl" |
|
_DESCRIPTION = r"""\ |
|
The MABL (Metaphors Across Borders and Languages) dataset is a collection of |
|
6,366 figurative language expressions from seven languages, crafted to improve |
|
multilingual models' understanding of figurative speech and its linguistic |
|
variations. It was built by crowdsourcing native speakers to generate paired |
|
metaphors that began with the same words but had different meanings, as well as |
|
the literal interpretations of both phrases. Each expression was checked by |
|
fluent speakers to ensure they were clear, appropriate, and followed the format, |
|
discarding any that didn't meet these standards. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/simran-khanuja/Multilingual-Fig-QA" |
|
_LICENSE = Licenses.MIT.value |
|
_URL = "https://raw.githubusercontent.com/simran-khanuja/Multilingual-Fig-QA/main/langdata/" |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def iso3to2(lang: str) -> str: |
|
"""Convert 3-letter ISO code to its 2-letter equivalent""" |
|
iso_map = {"ind": "id", "jav": "jv", "sun": "su"} |
|
return iso_map[lang] |
|
|
|
|
|
class MABLDataset(datasets.GeneratorBasedBuilder): |
|
"""MABL dataset by Liu et al (2023)""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "qa" |
|
|
|
dataset_names = sorted([f"{_DATASETNAME}_{lang}" for lang in _LANGUAGES]) |
|
BUILDER_CONFIGS = [] |
|
for name in dataset_names: |
|
source_config = SEACrowdConfig( |
|
name=f"{name}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=name, |
|
) |
|
BUILDER_CONFIGS.append(source_config) |
|
seacrowd_config = SEACrowdConfig( |
|
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=name, |
|
) |
|
BUILDER_CONFIGS.append(seacrowd_config) |
|
|
|
|
|
BUILDER_CONFIGS.extend( |
|
[ |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema (all)", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
|
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema (all)", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"startphrase": datasets.Value("string"), |
|
"ending1": datasets.Value("string"), |
|
"ending2": datasets.Value("string"), |
|
"labels": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.qa_features |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Return SplitGenerators.""" |
|
mabl_source_data = [] |
|
languages = [] |
|
|
|
lang = self.config.name.split("_")[1] |
|
if lang in _LANGUAGES: |
|
|
|
mabl_source_data.append(dl_manager.download_and_extract(_URL + f"{iso3to2(lang)}.csv")) |
|
languages.append(lang) |
|
else: |
|
|
|
|
|
for lang in _LANGUAGES: |
|
mabl_source_data.append(dl_manager.download_and_extract(_URL + f"{iso3to2(lang)}.csv")) |
|
languages.append(lang) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
|
|
|
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": mabl_source_data, |
|
"split": "test", |
|
"languages": languages, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepaths: List[Path], split: str, languages: List[str]) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
|
|
startphrases = [] |
|
endings1 = [] |
|
endings2 = [] |
|
labels = [] |
|
|
|
for lang, filepath in zip(languages, filepaths): |
|
with open(filepath, encoding="utf-8") as f: |
|
csv_reader = csv.reader(f, delimiter=",") |
|
next(csv_reader, None) |
|
for row in csv_reader: |
|
|
|
|
|
|
|
|
|
|
|
if lang == "ind": |
|
end1, end2, label, start = row |
|
if lang == "jav" or lang == "sun": |
|
end1, end2, start, label = row |
|
|
|
startphrases.append(start) |
|
endings1.append(end1) |
|
endings2.append(end2) |
|
labels.append(label) |
|
|
|
for idx, (start, end1, end2, label) in enumerate(zip(startphrases, endings1, endings2, labels)): |
|
if self.config.schema == "source": |
|
example = { |
|
"id": str(idx), |
|
"startphrase": start, |
|
"ending1": end1, |
|
"ending2": end2, |
|
"labels": label, |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
|
|
choices = [end1, end2] |
|
answer = choices[int(label)] |
|
|
|
|
|
|
|
|
|
example = { |
|
"id": str(idx), |
|
"question_id": idx, |
|
"document_id": idx, |
|
"question": start, |
|
"type": "multiple_choice", |
|
"choices": choices, |
|
"context": "", |
|
"answer": [answer], |
|
"meta": {}, |
|
} |
|
|
|
yield idx, example |
|
|