|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{myint-oo-etal-2019-neural, |
|
title = "Neural Machine Translation between {M}yanmar ({B}urmese) and {R}akhine ({A}rakanese)", |
|
author = "Myint Oo, Thazin and |
|
Kyaw Thu, Ye and |
|
Mar Soe, Khin", |
|
editor = {Zampieri, Marcos and |
|
Nakov, Preslav and |
|
Malmasi, Shervin and |
|
Ljube{\v{s}}i{\'c}, Nikola and |
|
Tiedemann, J{\"o}rg and |
|
Ali, Ahmed}, |
|
booktitle = "Proceedings of the Sixth Workshop on {NLP} for Similar Languages, Varieties and Dialects", |
|
month = jun, |
|
year = "2019", |
|
address = "Ann Arbor, Michigan", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W19-1408", |
|
doi = "10.18653/v1/W19-1408", |
|
pages = "80--88", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "myanmar_rakhine_parallel" |
|
_DESCRIPTION = """\ |
|
The data contains 18,373 Myanmar sentences of the ASEAN-MT Parallel Corpus, |
|
which is a parallel corpus in the travel domain. It contains six main |
|
categories: people (greeting, introduction, and communication), survival |
|
(transportation, accommodation, and finance), food (food, beverages, and |
|
restaurants), fun (recreation, traveling, shopping, and nightlife), resource |
|
(number, time, and accuracy), special needs (emergency and health). Manual |
|
translation into the Rakhine language was done by native Rakhine students from |
|
two Myanmar universities, and the translated corpus was checked by the editor |
|
of a Rakhine newspaper. Word segmentation for Rakhine was done manually, and |
|
there are exactly 123,018 words in total. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ye-kyaw-thu/myPar/tree/master/my-rk" |
|
_LANGUAGES = ["mya", "rki"] |
|
_LICENSE = Licenses.GPL_3_0.value |
|
_LOCAL = False |
|
_URLS = { |
|
"train_mya": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/train.my", |
|
"dev_mya": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/dev.my", |
|
"test_mya": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/test.my", |
|
"train_rki": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/train.rk", |
|
"dev_rki": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/dev.rk", |
|
"test_rki": "https://raw.githubusercontent.com/ye-kyaw-thu/myPar/master/my-rk/ver-0.1/test.rk", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "0.1.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MyanmarRakhineParallel(datasets.GeneratorBasedBuilder): |
|
"""Myanmar-Rakhine Parallel dataset from https://github.com/ye-kyaw-thu/myPar/tree/master/my-rk""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source" or self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text2text_features |
|
else: |
|
raise ValueError(f"Invalid config schema: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_paths = { |
|
"train_mya": Path(dl_manager.download_and_extract(_URLS["train_mya"])), |
|
"dev_mya": Path(dl_manager.download_and_extract(_URLS["dev_mya"])), |
|
"test_mya": Path(dl_manager.download_and_extract(_URLS["test_mya"])), |
|
"train_rki": Path(dl_manager.download_and_extract(_URLS["train_rki"])), |
|
"dev_rki": Path(dl_manager.download_and_extract(_URLS["dev_rki"])), |
|
"test_rki": Path(dl_manager.download_and_extract(_URLS["test_rki"])), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"mya_filepath": data_paths["train_mya"], |
|
"rki_filepath": data_paths["train_rki"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"mya_filepath": data_paths["test_mya"], |
|
"rki_filepath": data_paths["test_rki"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"mya_filepath": data_paths["dev_mya"], |
|
"rki_filepath": data_paths["dev_rki"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, mya_filepath: Path, rki_filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
with open(mya_filepath, "r", encoding="utf-8") as mya_file: |
|
mya_data = mya_file.readlines() |
|
mya_data = [s.strip("\n") for s in mya_data] |
|
|
|
|
|
with open(rki_filepath, "r", encoding="utf-8") as rki_file: |
|
rki_data = rki_file.readlines() |
|
rki_data = [s.strip("\n") for s in rki_data] |
|
|
|
num_sample = len(mya_data) |
|
|
|
for i in range(num_sample): |
|
if self.config.schema == "source" or self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
example = {"id": str(i), "text_1": mya_data[i], "text_2": rki_data[i], "text_1_name": "mya", "text_2_name": "rki"} |
|
yield i, example |
|
|