from pathlib import Path import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @misc{myXNLI2023, title = "myXNLI", author = "akhtet", year = "202", url = "https://github.com/akhtet/myXNLI", } """ _DATASETNAME = "myxnli" _DESCRIPTION = """ The myXNLI corpus is a collection of Myanmar language data designed for the Natural Language Inference (NLI) task, which originated from the XNLI and MultiNLI English datasets. The 7,500 sentence pairs from the XNLI English development and test sets are human-translated into Myanmar. The 392,702 data from the NLI English training data is translated using machine translation. In addition, it also extends its scope by adding Myanmar translations to the XNLI 15-language parallel corpus, to create a 16-language parallel corpus. """ _HOMEPAGE = "https://github.com/akhtet/myXNLI" _LANGUAGES = ["mya"] _LICENSE = Licenses.CC_BY_NC_4_0.value _LOCAL = False _URLS = { _DATASETNAME: { "train": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/train-00000-of-00001-2614419e00195781.parquet", "dev": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/validation-00000-of-00001-9c168eb31d1d810b.parquet", "test": "https://huggingface.co/datasets/akhtet/myXNLI/resolve/main/data/test-00000-of-00001-0fd9f93baf8c9cdb.parquet", }, } _SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT] _SOURCE_VERSION = "1.1.0" _SEACROWD_VERSION = "2024.06.20" class MyXNLIDataset(datasets.GeneratorBasedBuilder): """The myXNLI corpus is a collection of Myanmar language data designed for the Natural Language Inference task.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_pairs", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_pairs", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "genre": datasets.Value("string"), "label": datasets.ClassLabel(names=["contradiction", "entailment", "neutral"]), "sentence1_en": datasets.Value("string"), "sentence2_en": datasets.Value("string"), "sentence1_my": datasets.Value("string"), "sentence2_my": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_pairs": features = schemas.pairs_features(["contradiction", "entailment", "neutral"]) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir, "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir, "split": "dev"}, ), ] def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: if self.config.schema == "source": df = pd.read_parquet(filepath[split]) for i, row in df.iterrows(): yield i, { "genre": row["genre"], "label": row["label"], "sentence1_en": row["sentence1_en"], "sentence2_en": row["sentence2_en"], "sentence1_my": row["sentence1_my"], "sentence2_my": row["sentence2_my"], } elif self.config.schema == "seacrowd_pairs": df = pd.read_parquet(filepath[split]) for i, row in df.iterrows(): yield i, { "id": str(i), "text_1": row["sentence1_my"], "text_2": row["sentence2_my"], "label": row["label"], }